Academia.eduAcademia.edu

Outline

Aspects of Particle Physics and Cosmology from String/M Theory

2016

Abstract

This thesis is focused on various aspects of particle physics and cosmology from String/M theory. Assuming our universe is a solution of string/M theory, physics below the unification scale is an effective 4D supergravity theory with an abundance of moduli and axions. The phenomenology of moduli and axions in an early universe is studied. We particularly study dark radiation constraints on a generic Axiverse scenario and provide various solutions to it. The simplest solution requires the lightest modulus decays only into its own axion superpartner and this severely constrains the moduli Kahler potential and mass matrix. We also study a model building aspect of string/M theory. It has been shown that a discrete symmetry on a manifold with G2 holonomy combined with symmetry breaking Wilson lines provide a solution to the doublet-triplet splitting problem. We extend the idea to a new class of model based on M theory compactified on a G2 manifold which leads to a novel solution where th...

References (126)

  1. Gerard Jungman, Marc Kamionkowski, and Kim Griest. Supersymmetric dark matter. Phys. Rept., 267:195-373, 1996.
  2. Keith A. Olive. TASI lectures on dark matter.
  3. Gianfranco Bertone, Dan Hooper, and Joseph Silk. Particle dark matter: Evidence, candidates and constraints. Phys. Rept., 405:279-390, 2005.
  4. Steven Weinberg. The Cosmological Constant Problem. Rev. Mod. Phys., 61:1-23, 1989.
  5. Edward Witten. The Cosmological constant from the viewpoint of string theory.
  6. Sean M. Carroll. The Cosmological constant. Living Rev. Rel., 4:1, 2001.
  7. R. N. Mohapatra et al. Theory of neutrinos: A White paper. Rept. Prog. Phys., 70:1757-1867, 2007.
  8. R. N. Mohapatra and A. Y. Smirnov. Neutrino Mass and New Physics. Ann. Rev. Nucl. Part. Sci., 56:569-628, 2006.
  9. R. D. Peccei. The Strong CP problem and axions. Lect. Notes Phys., 741:3-17, 2008. [,3(2006)].
  10. Jihn E. Kim. A Review on axions and the strong CP problem. AIP Conf. Proc., 1200:83-92, 2010.
  11. Jihn E. Kim and Gianpaolo Carosi. Axions and the Strong CP Problem. Rev. Mod. Phys., 82:557-602, 2010.
  12. Shamit Kachru, Renata Kallosh, Andrei D. Linde, and Sandip P. Trivedi. De Sitter vacua in string theory. Phys. Rev., D68:046005, 2003.
  13. Vijay Balasubramanian, Per Berglund, Joseph P. Conlon, and Fernando Quevedo. Systematics of moduli stabilisation in Calabi-Yau flux compacti- fications. JHEP, 03:007, 2005.
  14. Frederik Denef, Michael R. Douglas, Bogdan Florea, Antonella Grassi, and Shamit Kachru. Fixing all moduli in a simple f-theory compactification. Adv. Theor. Math. Phys., 9(6):861-929, 2005.
  15. Katrin Becker, Melanie Becker, Cumrun Vafa, and Johannes Walcher. Mod- uli Stabilization in Non-Geometric Backgrounds. Nucl. Phys., B770:1-46, 2007.
  16. Michael R. Douglas and Shamit Kachru. Flux compactification. Rev. Mod. Phys., 79:733-796, 2007.
  17. Frederik Denef, Michael R. Douglas, and Shamit Kachru. Physics of String Flux Compactifications. Ann. Rev. Nucl. Part. Sci., 57:119-144, 2007.
  18. John Preskill, Mark B. Wise, and Frank Wilczek. Cosmology of the Invisible Axion. Phys. Lett., B120:127-132, 1983.
  19. L. F. Abbott and P. Sikivie. A Cosmological Bound on the Invisible Axion. Phys. Lett., B120:133-136, 1983.
  20. Michael Dine and Willy Fischler. The Not So Harmless Axion. Phys. Lett., B120:137-141, 1983.
  21. Tom Banks, David B. Kaplan, and Ann E. Nelson. Cosmological impli- cations of dynamical supersymmetry breaking. Phys.Rev., D49:779-787, 1994.
  22. B. de Carlos, J.A. Casas, F. Quevedo, and E. Roulet. Model independent properties and cosmological implications of the dilaton and moduli sectors of 4-d strings. Phys.Lett., B318:447-456, 1993.
  23. Bobby Samir Acharya, Piyush Kumar, Konstantin Bobkov, Gordon Kane, Jing Shao, et al. Non-thermal Dark Matter and the Moduli Problem in String Frameworks. JHEP, 0806:064, 2008.
  24. Michael B. Green, J. H. Schwarz, and Edward Witten.
  25. Superstring Theory. Vol. 1: Introduction. 1988.
  26. Michael B. Green, J. H. Schwarz, and Edward Witten.
  27. Superstring Theory. Vol 2: Loop Amplitudes, Anomalies and phenomenology. 1988.
  28. Maximilian Kreuzer and Harald Skarke. Complete classification of reflexive polyhedra in four-dimensions. Adv. Theor. Math. Phys., 4:1209-1230, 2002.
  29. James Halverson and Washington Taylor. P 1 -bundle bases and the preva- lence of non-Higgsable structure in 4D F-theory models. JHEP, 09:086, 2015.
  30. Alessio Corti, Mark Haskins, Johannes Nordstrm, and Tommaso Pacini. G 2 - manifolds and associative submanifolds via semi-Fano 3-folds. Duke Math. J., 164(10):1971-2092, 2015.
  31. Asimina Arvanitaki, Savas Dimopoulos, Sergei Dubovsky, Nemanja Kaloper, and John March-Russell. String Axiverse. Phys.Rev., D81:123530, 2010.
  32. Bobby Samir Acharya and Konstantin Bobkov. Kahler Independence of the G(2)-MSSM. JHEP, 1009:001, 2010.
  33. Bobby Samir Acharya, Konstantin Bobkov, Gordon L. Kane, Piyush Ku- mar, and Jing Shao. Explaining the Electroweak Scale and Stabilizing Mod- uli in M Theory. Phys.Rev., D76:126010, 2007.
  34. Bobby Samir Acharya, Konstantin Bobkov, Gordon L. Kane, Jing Shao, and Piyush Kumar. The G(2)-MSSM: An M Theory motivated model of Particle Physics. Phys.Rev., D78:065038, 2008.
  35. Oskar Klein. Quantum Theory and Five-Dimensional Theory of Relativity. (In German and English). Z. Phys., 37:895-906, 1926. [Surveys High Energ. Phys.5,241(1986)].
  36. Luis E. Ibanez and Angel M. Uranga. String theory and particle physics: An introduction to string phenomenology. Cambridge University Press, 2012.
  37. Theodor Kaluza. On the Problem of Unity in Physics. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), 1921:966-972, 1921.
  38. P. Candelas, Gary T. Horowitz, Andrew Strominger, and Edward Witten. Vacuum Configurations for Superstrings. Nucl. Phys., B258:46-74, 1985.
  39. G. Papadopoulos and P. K. Townsend. Compactification of D = 11 su- pergravity on spaces of exceptional holonomy. Phys. Lett., B357:300-306, 1995.
  40. Bobby Samir Acharya and Sergei Gukov. M theory and singularities of exceptional holonomy manifolds. Phys.Rept., 392:121-189, 2004.
  41. Philip Candelas and Xenia de la Ossa. Moduli Space of Calabi-Yau Mani- folds. Nucl. Phys., B355:455-481, 1991.
  42. Savas Dimopoulos and Howard Georgi. Softly Broken Supersymmetry and SU(5). Nucl. Phys., B193:150-162, 1981.
  43. Savas Dimopoulos. Soft supersymmetry breaking and the supersymmetric standard model. Nucl. Phys. Proc. Suppl., 101:183-194, 2001. [,183(2001)].
  44. D. J. H. Chung, L. L. Everett, G. L. Kane, S. F. King, Joseph D. Lykken, and Lian-Tao Wang. The Soft supersymmetry breaking Lagrangian: Theory and applications. Phys. Rept., 407:1-203, 2005.
  45. Jihn E. Kim and Hans Peter Nilles. The mu Problem and the Strong CP Problem. Phys. Lett., B138:150-154, 1984.
  46. G.F. Giudice and A. Masiero. A Natural Solution to the mu Problem in Supergravity Theories. Phys.Lett., B206:480-484, 1988.
  47. Bobby Samir Acharya, Gordon Kane, Eric Kuflik, and Ran Lu. Theory and Phenomenology of µ in M theory. JHEP, 1105:033, 2011.
  48. Bobby Samir Acharya and Chakrit Pongkitivanichkul. The Axiverse induced Dark Radiation Problem. JHEP, 04:009, 2016.
  49. Bobby S. Acharya, Krzysztof Bo?ek, Miguel Crispim Romo, Stephen F. King, and Chakrit Pongkitivanichkul. SO(10) Grand Unification in M the- ory on a G2 manifold. Phys. Rev., D92(5):055011, 2015.
  50. Bobby S. Acharya, Krzysztof Bo?ek, Chakrit Pongkitivanichkul, and Kazuki Sakurai. Prospects for observing charginos and neutralinos at a 100 TeV proton-proton collider. JHEP, 02:181, 2015.
  51. Peter Svrcek and Edward Witten. Axions In String Theory. JHEP, 0606:051, 2006.
  52. Bobby Samir Acharya, Konstantin Bobkov, and Piyush Kumar. An M Theory Solution to the Strong CP Problem and Constraints on the Axiverse. JHEP, 1011:105, 2010.
  53. George Lazarides, Robert K. Schaefer, D. Seckel, and Q. Shafi. Dilution of Cosmological Axions by Entropy Production. Nucl. Phys., B346:193-212, 1990.
  54. Patrick Fox, Aaron Pierce, and Scott D. Thomas. Probing a QCD string axion with precision cosmological measurements. 2004.
  55. Jared Kaplan. Dark matter generation and split supersymmetry. JHEP, 10:065, 2006.
  56. G. Hinshaw et al. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results. 2012.
  57. Z. Hou, C.L. Reichardt, K.T. Story, B. Follin, R. Keisler, et al. Constraints on Cosmology from the Cosmic Microwave Background Power Spectrum of the 2500-square degree SPT-SZ Survey. 2012.
  58. Jonathan L. Sievers, Renee A. Hlozek, Michael R. Nolta, Viviana Acquaviva, Graeme E. Addison, et al. The Atacama Cosmology Telescope: Cosmolog- ical parameters from three seasons of data. 2013.
  59. P. A. R. Ade et al. Planck 2015 results. XIII. Cosmological parameters. 2015.
  60. Michele Cicoli, Joseph P. Conlon, and Fernando Quevedo. Dark Radiation in LARGE Volume Models. Phys.Rev., D87:043520, 2013.
  61. Tetsutaro Higaki and Fuminobu Takahashi. Dark Radiation and Dark Mat- ter in Large Volume Compactifications. JHEP, 1211:125, 2012.
  62. Tetsutaro Higaki, Kazunori Nakayama, and Fuminobu Takahashi. Moduli- Induced Axion Problem. JHEP, 1307:005, 2013.
  63. Joseph P. Conlon and M. C. David Marsh. The Cosmophenomenology of Axionic Dark Radiation. JHEP, 1310:214, 2013.
  64. Stephen Angus, Joseph P. Conlon, Ulrich Haisch, and Andrew J. Powell. Loop corrections to ∆N ef f in large volume models. JHEP, 12:061, 2013.
  65. Michele Cicoli. Axion-like Particles from String Compactifications. 2013.
  66. Michele Cicoli, Joseph P. Conlon, M. C. David Marsh, and Markus Rummel. 3.55 keV photon line and its morphology from a 3.55 keV axionlike particle line. Phys. Rev., D90:023540, 2014.
  67. Stephen Angus. Dark Radiation in Anisotropic LARGE Volume Compact- ifications. JHEP, 1410:184, 2014.
  68. Arthur Hebecker, Patrick Mangat, Fabrizio Rompineve, and Lukas T. Witkowski. Dark Radiation predictions from general Large Volume Sce- narios. JHEP, 1409:140, 2014.
  69. Michele Cicoli and Francesco Muia. General Analysis of Dark Radiation in Sequestered String Models. 2015.
  70. David J. E. Marsh. Axion Cosmology. 2015.
  71. Joseph P. Conlon, Fernando Quevedo, and Kerim Suruliz. Large-volume flux compactifications: Moduli spectrum and D3/D7 soft supersymmetry breaking. JHEP, 08:007, 2005.
  72. Bobby Samir Acharya, Gordon Kane, and Piyush Kumar. Compactified String Theories -Generic Predictions for Particle Physics. Int.J.Mod.Phys., A27:1230012, 2012.
  73. Edward Witten. Symmetry Breaking Patterns in Superstring Models. Nucl.Phys., B258:75, 1985.
  74. Rabindra N. Mohapatra and Michael Ratz. Gauged Discrete Symmetries and Proton Stability. Phys.Rev., D76:095003, 2007.
  75. Hyun Min Lee, Stuart Raby, Michael Ratz, Graham G. Ross, Roland Schieren, et al. A unique Z R 4 symmetry for the MSSM. Phys.Lett., B694:491-495, 2011.
  76. Edward Witten. Deconstruction, G(2) holonomy, and doublet triplet split- ting.
  77. A. Brignole, Luis E. Ibanez, and C. Munoz. Soft supersymmetry breaking terms from supergravity and superstring models. Adv. Ser. Direct. High Energy Phys., 21:244-268, 2010.
  78. J. Wess and J. Bagger. Supersymmetry and supergravity. 1992.
  79. G.R. Dvali. Light color triplet Higgs is compatible with proton stability: An Alternative approach to the doublet -triplet splitting problem. Phys.Lett., B372:113-120, 1996.
  80. Wolfgang Kilian and Jurgen Reuter. Unification without doublet-triplet splitting. Phys.Lett., B642:81-84, 2006.
  81. Juergen Reuter. SUSY multi-step unification without doublet-triplet split- ting. 2007.
  82. R. Howl and S.F. King. Minimal E(6) Supersymmetric Standard Model. JHEP, 0801:030, 2008.
  83. Christopher F. Kolda and Stephen P. Martin. Low-energy supersymmetry with D term contributions to scalar masses. Phys. Rev., D53:3871-3883, 1996.
  84. Bobby Samir Acharya and Edward Witten. Chiral fermions from manifolds of G(2) holonomy. 2001.
  85. Takeshi Araki, Tatsuo Kobayashi, Jisuke Kubo, Saul Ramos-Sanchez, Michael Ratz, et al. (Non-)Abelian discrete anomalies. Nucl.Phys., B805:124-147, 2008.
  86. Bobby S. Acharya, Gordon L. Kane, Piyush Kumar, Ran Lu, and Bob Zheng. R-Parity Conservation from a Top Down Perspective. JHEP, 1410:1, 2014.
  87. Tom Banks, Yuval Grossman, Enrico Nardi, and Yosef Nir. Supersymmetry without R-parity and without lepton number. Phys.Rev., D52:5319-5325, 1995.
  88. Herbert K. Dreiner. An Introduction to explicit R-parity violation. Adv.Ser.Direct.High Energy Phys., 21:565-583, 2010.
  89. Bobby S. Acharya, Sebastian A. R. Ellis, Gordon L. Kane, Brent D. Nelson, and Malcolm J. Perry. The lightest visible-sector supersymmetric particle is likely to be unstable. 2016.
  90. Georges Aad et al. Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector. JHEP, 1405:071, 2014.
  91. Vardan Khachatryan et al. Searches for electroweak production of charginos, neutralinos, and sleptons decaying to leptons and W, Z, and Higgs bosons in pp collisions at 8 TeV. 2014.
  92. Search for Supersymmetry at the high luminosity LHC with the ATLAS experiment. Technical Report ATL-PHYS-PUB-2014-010, CERN, Geneva, 2014.
  93. Timothy Cohen, Tobias Golling, Mike Hance, Anna Henrichs, Kiel Howe, et al. SUSY Simplified Models at 14, 33, and 100 TeV Proton Colliders. JHEP, 1404:117, 2014.
  94. Tim Andeen, Clare Bernard, Kevin Black, Taylor Childres, Lidia Dell'Asta, et al. Sensitivity to the Single Production of Vector-Like Quarks at an Upgraded Large Hadron Collider. 2013.
  95. Leonard Apanasevich, Suneet Upadhyay, Nikos Varelas, Daniel Whiteson, and Felix Yu. Sensitivity of potential future pp colliders to quark compos- iteness. 2013.
  96. Daniel Stolarski. Reach in All Hadronic Stop Decays: A Snowmass White Paper. 2013.
  97. Felix Yu. Di-jet resonances at future hadron colliders: A Snowmass whitepa- per. 2013.
  98. Ning Zhou, David Berge, LianTao Wang, Daniel Whiteson, and Tim Tait. Sensitivity of future collider facilities to WIMP pair production via effective operators and light mediators. 2013.
  99. Sunghoon Jung and James D. Wells. Gaugino physics of split super- symmetry spectrum at the LHC and future proton colliders. Phys.Rev., D89:075004, 2014.
  100. Andrew Fowlie and Martti Raidal. Prospects for constrained supersym- metry at √ s = 33 TeV and √ s = 100 TeV proton-proton super-colliders.
  101. Eur.Phys.J., C74:2948, 2014.
  102. Sebastian A. R. Ellis, Gordon L. Kane, and Bob Zheng. Superpartners at LHC and Future Colliders: Predictions from Constrained Compactified M-Theory. 2014.
  103. Matthew Low and Lian-Tao Wang. Neutralino Dark Matter at 100 TeV. 2014.
  104. Marco Cirelli, Filippo Sala, and Marco Taoso. Wino-like Minimal Dark Matter and future colliders. 2014.
  105. David Curtin, Patrick Meade, and Chiu-Tien Yu. Testing Electroweak Baryogenesis with Future Colliders. JHEP, 1411:127, 2014.
  106. Lisa Randall and Raman Sundrum. Out of this world supersymmetry break- ing. Nucl.Phys., B557:79-118, 1999.
  107. Gian F. Giudice, Markus A. Luty, Hitoshi Murayama, and Riccardo Rat- tazzi. Gaugino mass without singlets. JHEP, 9812:027, 1998.
  108. Takeo Moroi and Lisa Randall. Wino cold dark matter from anomaly me- diated SUSY breaking. Nucl.Phys., B570:455-472, 2000.
  109. Nima Arkani-Hamed and Savas Dimopoulos. Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC. JHEP, 0506:073, 2005.
  110. G.F. Giudice and A. Romanino. Split supersymmetry. Nucl.Phys., B699:65- 89, 2004.
  111. N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice, and A. Romanino. Aspects of split supersymmetry. Nucl.Phys., B709:3-46, 2005.
  112. Michele Cicoli, Joseph P. Conlon, and Fernando Quevedo. General Analysis of LARGE Volume Scenarios with String Loop Moduli Stabilisation. JHEP, 10:105, 2008.
  113. J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, et al. The auto- mated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP, 1407:079, 2014.
  114. Sunghoon Jung. Resolving the existence of Higgsinos in the LHC inverse problem. JHEP, 1406:111, 2014.
  115. A. Djouadi, M.M. Muhlleitner, and M. Spira. Decays of supersymmetric par- ticles: The Program SUSY-HIT (SUspect-SdecaY-Hdecay-InTerface). Acta Phys.Polon., B38:635-644, 2007.
  116. Howard Baer, Vernon Barger, Andre Lessa, Warintorn Sreethawong, and Xerxes Tata. Wh plus missing-E T signature from gaugino pair production at the LHC. Phys.Rev., D85:055022, 2012.
  117. T. Han, S. Padhi, and S. Su. Electroweakinos in the Light of the Higgs Boson. Phys.Rev., D88:115010, 2013.
  118. Diptimoy Ghosh, Monoranjan Guchait, and Dipan Sengupta. Higgs Signal in Chargino-Neutralino Production at the LHC. Eur.Phys.J., C72:2141, 2012.
  119. Pritibhajan Byakti and Diptimoy Ghosh. Magic Messengers in Gauge Medi- ation and signal for 125 GeV boosted Higgs boson. Phys.Rev., D86:095027, 2012.
  120. Andreas Papaefstathiou, Kazuki Sakurai, and Michihisa Takeuchi. Higgs boson to di-tau channel in Chargino-Neutralino searches at the LHC. 2014.
  121. Jacob Anderson, Aram Avetisyan, Raymond Brock, Sergei Chekanov, Tim- othy Cohen, et al. Snowmass Energy Frontier Simulations. 2013.
  122. Patrick Meade and Matthew Reece. BRIDGE: Branching ratio inquiry / decay generated events. 2007.
  123. Torbjorn Sjostrand, Stephen Mrenna, and Peter Z. Skands. PYTHIA 6.4 Physics and Manual. JHEP, 0605:026, 2006.
  124. J. de Favereau et al. DELPHES 3, A modular framework for fast simulation of a generic collider experiment. JHEP, 1402:057, 2014.
  125. Stefania Gori, Sunghoon Jung, Lian-Tao Wang, and James D. Wells. Prospects for Electroweakino Discovery at a 100 TeV Hadron Collider. 2014.
  126. Michelangelo L. Mangano, Mauro Moretti, Fulvio Piccinini, and Michele Treccani. Matching matrix elements and shower evolution for top-quark production in hadronic collisions. JHEP, 0701:013, 2007.