Academia.eduAcademia.edu

Outline

What Mathematical Logic Says about the Foundations of Mathematics

2014, arXiv: History and Overview

Abstract

My purpose is to examine some concepts of mathematical logic, which have been studied by Carlo Cellucci. Today the aim of classical mathematical logic is not to guarantee the certainty of mathematics, but I will argue that logic can help us to explain mathematical activity; the point is to discuss what and in which sense logic can "explain". For example, let's consider the basic concept of an axiomatic system: an axiomatic system can be very useful to organize, to present, and to clarify mathematical knowledge. And, more importantly, logic is a science with its own results: so, axiomatic systems are interesting also because we know several revealing theorems about them. Similarly, I will discuss other topics such as mathematical definitions, and some relationships between mathematical logic and computer science. I will also consider these subjects from an educational point of view: can logical concepts be useful in teaching and learning elementary mathematics?

References (13)

  1. Arzarello F. (2012). Provare se, vedere che, sapere perché: la dimostrazione in classe. In: Proceedings of the XIX Congress of the Unione Matematica Italiana, to appear
  2. Bernardi C. (1998). How formal should a proof be in teaching mathematics?. Bulletin of the Belgian Mathematical Society, suppl. 5, n. 5: 7-18
  3. Bernardi C. (2010). Linguaggio algebrico e linguaggio logico nell'insegnamento e nell'apprendimento della matematica. In G. Gerla, ed., Logica matematica e processi cognitivi, Collana Scientifica dell'Università di Salerno, Rubbettino Editore: 39-45
  4. Bernardi C. (2011). I linguaggi della matematica a scuola. Riflessioni di un logico, L'insegnamento della Matematica e delle Scienze integrate, 34 A-B: 559-576
  5. Cellucci C. (2002). Filosofia e matematica, Rome-Bari: Laterza Cellucci C. (2010). Matematica e filosofia della matematica: presente e futuro, La Matematica nella Società e nella Cultura -Rivista della Unione Matematica Italiana (1) 3: 201-234
  6. Devlin K. (1992). Computers and Mathematics, Notices of the AMS, 39: 1065-1066
  7. Davis P.J. and Hersh R. (1981). The Mathematical Experience, Boston: Birkhäuser
  8. Francini P. (2010). Cercare, mostrare, dimostrare, Archimede, LXII: 67-73
  9. Hersh R. (2011). Mathematical Intuition (Poincare, Polya, Dewey). In Cellucci C., Grosholz E., Ippoliti E., eds., Logic and Knowledge, Cambridge Scholars Publishing, UK: 297-323 (partially translated into Italian in Archimede, LXII (2010): 202-205)
  10. Magari R. (1974). Su certe teorie non enumerabili, Annali di matematica pura ed applicata (IV), XCVIII: 119-152
  11. Magari R. (1975). Significato e verità nell'aritmetica peaniana, Annali di matematica pura ed applicata (IV), CIII: 343-368
  12. Marcone A. (2009). Equivalenze tra teoremi: il programma di ricerca della reverse mathematics, La Matematica nella Società e nella Cultura - Rivista della Unione Matematica Italiana, Serie III: 101-126
  13. Rogers H. (1967). Theory of recursive functions and effective computability, New York: McGraw-Hill