Emergency Building Control
Encyclopedia of Systems and Control
https://doi.org/10.1007/978-3-030-44184-5_100078Abstract
Economic model predictive control (EMPC) is a variant of model predictive control aimed at maximization of system's profitability. It allows one to explicitly deal with hard and average constraints on system's input and output variables as well as with nonlinearity of dynamics. We provide basic definitions and concepts of the approach and highlight some promising research directions.
References (311)
- Höhle U (1981) A mathematical theory of uncertainty: fuzzy experiments and their realizations. In: Yager R (ed) Recent developments in fuzzy sets and possibility theory. Permagon Press, pp 344-355. Oxford, UK Kingman J (1993) Poisson processes. Oxford University Press, London
- Kruse R, Schwencke E, Heinsohn J (1991) Uncertainty and vagueness in knowledge-based systems. Springer, New York
- Mahler R (2004) 'Statistics 101' for multisensor, multitar- get data fusion. IEEE Trans Aerospace Electron Syst Mag Part 2 Tutorials 19(1):53-64
- Mahler R (2007) Statistical multisource-multitarget infor- mation fusion. Artech House, Norwood
- Mahler R (2013) 'Statistics 102' for multisensor- multitarget tracking. IEEE J Spec Top Sign Proc 7(3):376-389
- Mahler R (2014) Advances in statistical multisource- multitarget information fusion. Artech House, Nor- wood Matheron G (1975) Random sets and integral geometry. Wiley, New York
- Michael E (1950) Topologies on spaces of subsets. Trans Am Math Soc 71:152-182
- Molchanov I (2005) Theory of random sets. Springer, London
- Nguyen H (1978) On random sets and belief functions. J Math Anal Appl 65:531-542
- Orlov A (1978) Fuzzy and random sets. Prikladnoi Mno- gomerni Statisticheskii Analys, Moscow
- Snyder D, Miller M (1991) Random point processes in time and space, 2nd edn. Springer, New York
- Stoyan D, Kendall W, Meche J (1995) Stochastic geome- try and its applications, 2nd edn. Wiley, New York Vo B-T, Vo B-N (2013) Labeled random finite sets and multi-object conjugate priors. IEEE Trans Sign Proc 61(13):3460-3475
- Vo B-N, Vo B-T, Hoang HG (2017) An efficient imple- mentation of the generalized labeled multi-Bernoulli filter. IEEE Trans Sign Proc 65(8):1975-1987 Linear stochastic filtering • Markov step processes • Maximum likelihood estimation • Riccati equation • Stratonovich-Kushner equation Estimation is the process of inferring the value of an unknown given quantity of interest from noisy, direct or indirect, observations of such a quantity. Due to its great practical relevance, estimation has a long history and an enormous variety of applications in all fields of engineering and science. A certainly incomplete list of possible application domains of estimation includes the following: statistics (Lehmann and Casella 1998; Bard 1974; Wertz 1978; Ghosh et al. 1997; Koch 1999; Tsybakov 2009), telecommunication systems (Snyder 1968; Van Trees 1971; Sage and Melsa 1971; Schonhoff and Giordano 2006), signal and image processing (Kay 1993; Itakura 1971; Wakita 1973; Poor 1994; Elliott et al. 2008; Barkat 2005; Levy 2008; Najim 2008; Tuncer and Friedlander 2009; Woods and Radewan 1977; Biemond et al. 1983; Kim and Woods 1998), aerospace engineering (McGee and Schmidt 1985), tracking (Farina and Studer 1985, 1986; Blackman and Popoli 1999; Bar-Shalom et al. 2001, 2013; Bar-Shalom and Fortmann 1988), navigation (Schmidt 1966; Farrell and Barth 1999; Grewal et al. 2001; Smith et al. 1986; Dissanayake et al. 2001; Durrant-Whyte and Bailey 2006a, b; Thrun et al. 2006; Mullane et al. 2011), control systems (Kalman 1960a; Joseph and Tou 1961; Athans 1971; Anderson and Moore 1979; Maybeck 1979, 1982; Stengel 1994; Söderström 1994; Goodwin et al. 2005), econometrics (Zellner 1971; Pindyck and Roberts 1974; Aoki 1987), geophysics (e.g., seismic deconvolution) (Flinn et al. 1967; Bayless and Brigham 1970; Mendel 1977, 1983, 1990), oceanography (Ghil and Malanotte-Rizzoli 1991; Evensen 1994a), weather forecasting (McGarty E 1971; Evensen 1994b, 2007), environmental engineering (Nachazel 1993; Dochain and Vanrolleghem 2001; Heemink and Segers 2002), demographic systems (Leibungudt et al. 1983), automotive systems (Stephant et al. 2004; Barbarisi et al. 2006), failure detection (Willsky 1976; Mangoubi 1998; Chen and Patton 1999), power systems (Debs and Larson 1970; Toyoda et al. 1970; Miller and Lewis 1971; Monticelli 1999; Abur and Gómez Espósito 2004), nuclear engineering (Sage and Masters 1967; Roman et al. 1971; Venerus and Bullock 1970; Robinson 1963), biomedical engineering (Stark 1968; Snyder 1970; Bekey 1973), pattern recognition (Ho and Agrawala 1968; Lainiotis 1972; Andrews 1972), social networks (Snijders et al. 2012), etc.
- Estimation, Survey on, Table 1 Major developments on estimation Archimedes Third century B.C. Combinatorics (Netz and Noel 2011) as the basis of probability
- G. Cardano, B. Pascal, P. de Fermat, C. Huygens Sixteenth-seventeenth cen- turies Roots of the theory of probability (Devlin 2008)
- J. F. Riccati 1722-1723 Differential Riccati equation (Riccati 1722, 1723), subsequently exploited in the theory of linear stochastic filtering T. Bayes 1763 Bayes' formula on conditional probability (Bayes 1763; McGrayne 2011)
- C. F. Gauss, A. M. Legendre1795-1810 Least-squares estimation and its applications to the pre- diction of planet orbits (Gauss 1806, 1995; Legendre 1810)
- P. S. Laplace 1814 Theory of probability (Laplace 1814)
- R. A. Fisher 1912-1922 Maximum likelihood estimation (Fisher 1912, 1922, 1925)
- A. N. Kolmogorov 1933 Modern theory of probability (Kolmogorov 1933)
- N. Wiener 1940 Minimum mean-square error estimation of continuous- time stationary random signals (Wiener 1949)
- A. N. Kolmogorov 1941 Minimum mean-square error estimation of discrete- time stationary random signals (Kolmogorov 1941)
- H. Cramér, C. R. Rao 1945 Theoretical lower bound on the covariance of estima- tors (Rao 1945; Cramér 1946)
- S. Ulam, J. von Neumann, N. Metropolis, E. Fermi 1946-1949
- Monte Carlo method (Ulam et al. 1947; Metropolis and Ulam 1949; Ulam 1952; Los Alamos Scientific Laboratory 1966)
- J. Sklansky, T. R. Benedict, G. W. Bordner, H. R. Simp- son, S. R. Neal 1957-1967 α -β and α -β -γ filters (Sklansky 1957; Benedict and Bordner 1962; Simpson 1963; Neal 1967; Painter et al. 1990)
- R. L. Stratonovich, H. J. Kushner 1959-1964 Bayesian approach to stochastic nonlinear filtering of continuous-time systems, i.e., Stratonovich-Kushner equation for the evolution of the state conditional probability density (Stratonovich 1959, 1960; Kushner 1962, 1967; Jazwinski 1970)
- R. E. Kalman 1960 Linear filtering and prediction for discrete-time sys- tems (Kalman 1960b)
- R. E. Kalman 1961 Observability of linear dynamical systems (Kalman 1960a)
- R. E. Kalman, R. S. Bucy 1961 Linear filtering and prediction for continuous-time sys- tems (Kalman and Bucy 1961)
- A. E. Bryson, M. Frazier, H. E. Rauch, F. Tung, C. T. Striebel, D. Q. Mayne, J. S. Meditch, D. C. Fraser, L. E. Zachrisson, B. D. O. Ander- son, etc. Since 1963 Smoothing of linear and nonlinear systems (Bryson and Frazier 1963; Rauch 1963; Rauch et al. 1965; Mayne 1966; Meditch 1967; Zachrisson 1969; Ander- son and Chirarattananon 1972)
- D. G. Luenberger 1964 State observer for a linear system (Luenberger 1964)
- Y. C. Ho, R. C. K. Lee 1964 Bayesian approach to recursive nonlinear estimation for discrete-time systems (Ho and Lee 1964)
- W. M. Wonham 1965 Optimal filtering for Markov step processes (Wonham 1965)
- A. H. Jazwinski 1966 Bayesian approach to stochastic nonlinear filtering for continuous-time stochastic systems with discrete-time observations (Jazwinski 1966)
- E Estimation, Survey on, Table 1 (continued) Archimedes Third century B.C. Combinatorics (Netz and Noel 2011) as the basis of probability S. F. Schmidt 1966 Extended Kalman filter and its application for the manned lunar missions (Schmidt 1966)
- P. L. Falb, A. V. Balakr- ishnan, J. L. Lions, S. G. Tzafestas, J. M. Nightin- gale, H. J. Kushner, J. S. Meditch, etc. Since 1967 State estimation for infinite-dimensional (e.g., dis- tributed parameter, partial differential equation (PDE), delay) systems (Falb 1967; Balakrishnan and Lions 1967; Kwakernaak 1967; Tzafestas and Nightingale 1968; Kushner 1970; Meditch 1971)
- T. Kailath 1968 Principle of orthogonality and innovation approach to estimation (Kailath 1968, 1970; Kailath and Frost 1968; Frost and Kailath 1971; Kailath et al. 2000)
- A. H. Jazwinski, B. Rawl- ings, etc. Since 1968 Limited memory (receding-horizon, moving-horizon) state estimation with constraints (Jazwinski 1968; Rao et al. 2001, 2003; Alessandri et al. 2005, 2008)
- F. C. Schweppe, D. P. Bert- sekas, I. B. Rhodes, M. Milanese, etc. Since 1968
- Set-membership recursive state estimation with sys- tems with unknown but bounded noises (Schweppe 1968; Bertsekas and Rhodes 1971; Milanese and Belforte 1982; Milanese and Vicino 1993; Combettes 1993; Vicino and Zappa 1996; Chisci et al. 1996; Alamo et al. 2005)
- J. E. Potter, G. Golub, S. F. Schmidt, P. G. Kaminski, A. E. Bryson, A. Andrews, G. J. Bierman, M. Morf, T. Kailath, etc. 1968-1975
- Square-root filtering (Potter and Stern 1963; Golub 1965; Andrews 1968; Schmidt 1970; Kaminski and Bryson 1972; Bierman 1974, 1977; Morf and Kailath 1975)
- C. W. Helstrom 1969 Quantum estimation (Helstrom 1969, 1976)
- D. L. Alspach, H. W. Soren- son 1970-1972
- Gaussian-sum filters for nonlinear and/or non- Gaussian systems (Sorenson and Alspach 1970, 1971; Alspach and Sorenson 1972)
- T. Kailath, M. Morf, G. S. Sidhu 1973-1974
- Fast Chandrasekhar-type algorithms for recursive state estimation of stationary linear systems (Kailath 1973; Morf et al. 1974)
- A. Segall 1976 Recursive estimation from point processes (Segall 1976)
- J. W. Woods and C. Rade- wan 1977 Kalman filter in two dimensions (Woods and Radewan 1977) for image processing J. H. Taylor 1979 Cramér-Rao lower bound (CRLB) for recursive state estimation with no process noise (Taylor 1979)
- D. Reid 1979 Multiple Hypothesis Tracking (MHT) filter for multi- target tracking (Reid 1979)
- L. Servi, Y. Ho 1981 Optimal filtering for linear systems with uniformly distributed measurement noise (Servi and Ho 1981)
- V. E. Benes 1981 Exact finite-dimensional optimal MMSE filter for a class of nonlinear systems (Benes 1981)
- H. V. Poor, D. Looze, J. Dar- ragh, S. Verdú, M. J. Grim- ble, etc. 1981-1988
- Robust (e.g., H ∞ ) filtering (Poor and Looze 1981; Dar- ragh and Looze 1984; Verdú and Poor 1984; Grimble 1988; Hassibi et al. 1999; Simon 2006)
- V. J. Aidala, S. E. Hammel 1983 Bearings-only tracking (Aidala and Hammel 1983;
- F. E. Daum 1986 Extension of the Benes filter to a more general class of nonlinear systems (Daum 1986)
- Estimation, Survey on, Table 1 (continued) Archimedes Third century B.C. Combinatorics (Netz and Noel 2011) as the basis of probability L. Dai and others Since 1987 State estimation for linear descriptor (singular, implicit) stochastic systems (Dai 1987, 1989; Nikoukhah et al. 1992; Chisci and Zappa 1992)
- N. J. Gordon, D. J. Salmond, A. M. F. Smith 1993 Particle (sequential Monte Carlo) filter (Gordon et al. 1993; Doucet et al. 2001; Ristic et al. 2004)
- K. C. Chou, A. S. Willsky, A. Benveniste 1994 Multiscale Kalman filter (Chou et al. 1994)
- G. Evensen 1994 Ensemble Kalman filter for data assimilation in meteo- rology and oceanography (Evensen 1994b, 2007)
- R. P. S. Mahler 1994 Random set filtering (Mahler 1994, 2007a; Ristic et al. 2013)
- S. J. Julier, J. K. Uhlmann, H. Durrant-Whyte 1995
- Unscented Kalman filter (Julier et al. 1995; Julier and Uhlmann 2004)
- A. Germani et al. Since 1996 Polynomial extended Kalman filter for nonlinear and/or non-Gaussian systems (Carravetta et al. 1996; Germani et al. 2005)
- P. Tichavsky, C. H. Muravchik, A. Nehorai 1998 Posterior Cramér-Rao lower bound (PCRLB) for recur- sive state estimation (Tichavsky et al. 1998; van Trees and Bell 2007)
- R. Mahler 2003, 2007
- Probability hypothesis density (PHD) and cardinalized PHD (CPHD) filters (Mahler 2003, 2007b; Vo and Ma 1996; Vo et al. 2007; Ristic 2013)
- A.G. Ramm 2005 Estimation of random fields (Ramm 2005)
- M. Hernandez, A. Farina, B. Ristic 2006 PCRLB for tracking in the case of detection probability less than one and false alarm probability greater than zero (Hernandez et al. 2006)
- Olfati-Saber and others Since 2007 Consensus filters (Olfati-Saber et al. 2007; Calafiore and Abrate 2009; Xiao et al. 2005; Alriksson and Rantzer 2006; Olfati-Saber 2007; Kamgarpour and Tomlin 2007; Stankovic et al. 2009; Battistelli et al. 2011, 2012, 2013; Battistelli and Chisci 2014) for networked estimation E Chisci L, Zappa G (1992) Square-root Kalman filtering of descriptor systems. Syst Control Lett 19(4):325-334
- Chisci L, Garulli A, Zappa G (1996) Recursive state bounding by parallelotopes. Automatica 32(7): 1049-1055
- Chou KC, Willsky AS, Benveniste A (1994) Multiscale recursive estimation, data fusion, and regularization. IEEE Trans Autom Control 39(3):464-478
- Combettes P (1993) The foundations of set-theoretic esti- mation. Proc IEEE 81(2):182-208
- Cramér H (1946) Mathematical methods of statistics. University Press, Princeton
- Crisan D, Rozovskii B (eds) (2011) The Oxford handbook of nonlinear filtering. Oxford University Press, Oxford Dai L (1987) State estimation schemes in singular systems. In: Preprints 10th IFAC World Congress, Munich, vol 9, pp 211-215
- Dai L (1989) Filtering and LQG problems for discrete- time stochastic singular systems. IEEE Trans Autom Control 34(10):1105-1108
- Darragh J, Looze D (1984) Noncausal minimax linear state estimation for systems with uncertain second- order statistics. IEEE Trans Autom Control 29(6): 555-557
- Daum FE (1986) Exact finite dimensional nonlinear fil- ters. IEEE Trans Autom Control 31(7):616-622
- Daum F (2005) Nonlinear filters: beyond the Kalman filter. IEEE Aerosp Electron Syst Mag 20(8):57-69
- Debs AS, Larson RE (1970) A dynamic estimator for tracking the state of a power system. IEEE Trans Power Appar Syst 89(7):1670-1678
- Devlin K (2008) The unfinished game: Pascal, Fermat and the seventeenth-century letter that made the world modern. Basic Books, New York. Copyright (C) Keith Devlin
- Dissanayake G, Newman P, Clark S, Durrant-Whyte H, Csorba M (2001) A solution to the simultaneous localization and map building (SLAM) problem. IEEE Trans Robot Autom 17(3):229-241
- Dochain D, Vanrolleghem P (2001) Dynamical modelling and estimation of wastewater treatment processes. IWA Publishing, London
- Doucet A, de Freitas N, Gordon N (eds) (2001) Sequen- tial Monte Carlo methods in practice. Springer, New York
- Duncan TE (1970) On the calculation of mutual informa- tion. SIAM J Appl Math 19(1):215-220
- Durrant-Whyte H, Bailey T (2006a) Simultaneous local- ization and mapping: Part I. IEEE Robot Autom Mag 13(2):99-108
- Durrant-Whyte H, Bailey T (2006b) Simultaneous local- ization and mapping: Part II. IEEE Robot Autom Mag 13(3):110-117
- Elliott RJ, Aggoun L, Moore JB (2008) Hidden Markov models: estimation and control. Springer, New York. (first edition in 1995)
- Evensen G (1994a) Inverse methods and data assimilation in nonlinear ocean models. Physica D 77:108-129
- Evensen G (1994b) Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res 99(10):143-162
- Evensen G (2007) Data assimilation -the ensemble Kalman filter. Springer, Berlin
- Falb PL (1967) Infinite-dimensional filtering; the Kalman- Bucy filter in Hilbert space. Inf Control 11(1):102-137
- Farina A (1999) Target tracking with bearings-only mea- surements. Signal Process 78(1):61-78
- Farina A, Studer FA (1985) Radar data processing. Vol- ume 1 -introduction and tracking, Editor P. Bowron. Research Studies Press, Letchworth/Wiley, New York (Translated in Russian (Radio I Sviaz, Moscow 1993) and in Chinese. China Defense Publishing House, 1988)
- Farina A, Studer FA (1986) Radar data processing. Vol- ume 2 -advanced topics and applications, Editor P. Bowron. Research Studies Press, Letchworth/Wiley, New York (In Chinese, China Defense Publishing House, 1992)
- Farrell JA, Barth M (1999) The global positioning system and inertial navigation. McGraw-Hill, New York Fisher RA (1912) On an absolute criterion for fitting frequency curves. Messenger Math 41(5):155-160
- Fisher RA (1922) On the mathematical foundations of theoretical statistics. Philos Trans R Soc Lond Ser A 222:309-368
- Fisher RA (1925) Theory of statistical estimation. Math Proc Camb Philos Soc 22(5):700-725
- Flinn EA, Robinson EA, Treitel S (1967) Special issue on the MIT geophysical analysis group reports. Geo- physics 32:411-525
- Frost PA, Kailath T (1971) An innovations approach to least-squares estimation, Part III: nonlinear estimation in white Gaussian noise. IEEE Trans Autom Control 16(3):217-226
- Galilei G (1632) Dialogue concerning the two chief world systems (Translated in English by S. Drake (Foreword of A. Einstein), University of California Press, Berke- ley, 1953)
- Gauss CF (1806) Theoria motus corporum coelestium in sectionibus conicis solem ambientum (Translated in English by C.H. Davis, Reprinted as Theory of motion of the heavenly bodies, Dover, New York, 1963)
- Gauss CF (1995) Theoria combinationis observationum erroribus minimis obnoxiae (Translated by G.W. Stew- art, Classics in Applied Mathematics), vol 11. SIAM, Philadelphia
- Germani A, Manes C, Palumbo P (2005) Polynomial extended Kalman filter. IEEE Trans Autom Control 50(12):2059-2064
- Ghil M, Malanotte-Rizzoli P (1991) Data assimilation in meteorology and oceanography. Adv Geophys 33:141- 265
- Ghosh M, Mukhopadhyay N, Sen PK (1997) Sequential estimation. Wiley, New York Golub GH (1965) Numerical methods for solving lin- ear least squares problems. Numerische Mathematik 7(3):206-216
- Goodwin GC, Seron MM, De Doná JA (2005) Con- strained control and estimation. Springer, London Gordon NJ, Salmond DJ, Smith AFM (1993) Novel approach to nonlinear/non Gaussian Bayesian state estimation. IEE Proc F 140(2):107-113
- Grewal MS, Weill LR, Andrews AP (2001) Global posi- tioning systems, inertial navigation and integration. Wiley, New York
- Grimble MJ (1988) H ∞ design of optimal linear filters. In: Byrnes C, Martin C, Saeks R (eds) Linear circuits, systems and signal processing: theory and applications. North Holland, Amsterdam, pp 535-540
- Guo D, Shamai S, Verdú S (2005) Mutual information and minimum mean-square error in Gaussian channels. IEEE Trans Inf Theory 51(4):1261-1282
- Hall DL, Llinas J (1997) An introduction to multisensor data fusion. Proc IEEE 85(1):6-23
- Hassibi B, Sayed AH, Kailath T (1999) Indefinite- quadratic estimation and control. SIAM, Philadelphia Heemink AW, Segers AJ (2002) Modeling and predic- tion of environmental data in space and time using Kalman filtering. Stoch Environ Res Risk Assess 16: 225-240
- Helstrom CW (1969) Quantum detection and estimation theory. J Stat Phys 1(2):231-252
- Helstrom CW (1976) Quantum detection and estimation theory. Academic, New York Hernandez M, Farina A, Ristic B (2006) PCRLB for track- ing in cluttered environments: measurement sequence conditioning approach. IEEE Trans Aerosp Electron Syst 42(2):680-704
- Ho YC, Agrawala AK (1968) On pattern classifica- tion algorithms -introduction and survey. Proc IEEE 56(12):2101-2113
- Ho YC, Lee RCK (1964) A Bayesian approach to prob- lems in stochastic estimation and control. IEEE Trans Autom Control 9(4):333-339
- Iida S, Ohki F, Yamamoto N (2010) Robust quan- tum Kalman filtering under the phase uncertainty of the probe-laser. In: IEEE international symposium on computer-aided control system design, Yokohama, pp 749-754
- Itakura F (1971) Extraction of feature parameters of speech by statistical methods. In: Proceedings of the 8th Symposium Speech Information Processing, Sendai, pp II-5.1-II-5.12
- Jazwinski AH (1966) Filtering for nonlinear dynamical systems. IEEE Trans Autom Control 11(4):765-766
- Jazwinski AH (1968) Limited memory optimal filtering. IEEE Trans Autom Control 13(5): 558-563
- Jazwinski AH (1970) Stochastic processes and filtering theory. Academic, New York
- Joseph DP, Tou TJ (1961) On linear control theory. Trans Am Inst Electr Eng 80(18):193-196
- Julier SJ, Uhlmann JK (1997) A non-divergent estimation algorithm in the presence of unknown correlations. In: Proceedings of the 1997 American Control Confer- ence, Albuquerque, vol 4, pp 2369-2373
- Julier SJ, Uhlmann JK (2004) Unscented Filtering and Nonlinear Estimation. Proc IEEE 92(3): 401-422
- Julier SJ, Uhlmann JK, Durrant-Whyte H (1995) A new approach for filtering nonlinear systems. In: Proceed- ings of the 1995 American control conference, Seattle, vol 3, pp 1628-1632
- Kailath T (1968) An innovations approach to least- squares estimation, Part I: linear filtering in addi- tive white noise. IEEE Trans Autom Control 13(6): 646-655
- Kailath T (1970) The innovations approach to detection and estimation theory. Proc IEEE 58(5): 680-695
- Kailath T (1973) Some new algorithms for recursive estimation in constant linear systems. IEEE Trans Inf Theory 19(6):750-760
- Kailath T, Frost PA (1968) An innovations approach to least-squares estimation, Part II: linear smoothing in additive white noise. IEEE Trans Autom Control 13(6):655-660
- Kailath T, Sayed AH, Hassibi B (2000) Linear estimation. Prentice Hall, Upper Saddle River
- Kalman RE (1960a) On the general theory of control sys- tems. In: Proceedings of the 1st International Congress of IFAC, Moscow, USSR, vol 1, pp 481-492
- Kalman RE (1960b) A new approach to linear filtering and prediction problems. Trans ASME J Basic Eng Ser D 82(1):35-45
- Kalman RE, Bucy RS (1961) New results in linear filtering and prediction theory. Trans ASME J Basic Eng Ser D 83(3):95-108
- Kamgarpour M, Tomlin C (2007) Convergence properties of a decentralized Kalman filter. In: Proceedings of the 47th IEEE Conference on Decision and Control, New Orleans, pp 5492-5498
- Kaminski PG, Bryson AE (1972) Discrete square-root smoothing. In: Proceedings of the AIAA Guidance and Control Conference, paper no. 72-877, Stanford
- Kay SM (1993) Fundamentals of statistical signal pro- cessing, volume 1: estimation theory. Prentice Hall, Englewood Cliffs
- Kim K, Shevlyakov G (2008) Why Gaussianity? IEEE Signal Process Mag 25(2):102-113
- Kim J, Woods JW (1998) 3-D Kalman filter for image motion estimation. IEEE Trans Image Process 7(1):42- 52
- Koch KR (1999) Parameter estimation and hypothesis testing in linear models. Springer, Berlin Kolmogorov AN (1933) Grundbegriffe der Wahrschein- lichkeitsrechnung (in German) (English translation edited by Nathan Morrison: Foundations of the theory of probability, Chelsea, New York, 1956). Springer, Berlin
- Kolmogorov AN (1941) Interpolation and extrapolation of stationary random sequences. Izv Akad Nauk SSSR Ser Mat 5:3-14 (in Russian) (English translation by G. Lindqvist, published in Selected works of A.N. Kolmogorov -Volume II: Probability theory and math- ematical statistics, A.N. Shyryaev (Ed.), pp. 272-280, Kluwer, Dordrecht, Netherlands, 1992)
- Kushner HJ (1962) On the differential equations satis- fied by conditional probability densities of Markov processes with applications. SIAM J Control Ser A 2(1):106-199
- Najim M (2008) Modeling, estimation and optimal fil- tering in signal processing. Wiley, Hoboken. First published in France by Hermes Science/Lavoisier as Modélisation, estimation et filtrage optimal en traite- ment du signal (2006)
- Neal SR (1967) Discussion of parametric relations for the filter predictor. IEEE Trans Autom Control 12(3): 315-317
- Netz R, Noel W (2011) The Archimedes codex. Phoenix, Philadelphia, PA
- Nikoukhah R, Willsky AS, Levy BC (1992) Kalman filtering and Riccati equations for descriptor systems. IEEE Trans Autom Control 37(9):1325-1342
- Olfati-Saber R (2007) Distributed Kalman filtering for sensor networks. In: Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, pp 5492-5498
- Olfati-Saber R, Fax JA, Murray R (2007) Consensus and cooperation in networked multi-agent systems. Proc IEEE 95(1):215-233
- Painter JH, Kerstetter D, Jowers S (1990) Reconciling steady-state Kalman and α-β filter design. IEEE Trans Aerosp Electron Syst 26(6):986-991
- Park S, Serpedin E, Qarage K (2013) Gaussian assump- tion: the least favorable but the most useful. IEEE Signal Process Mag 30(3):183-186
- Personick SD (1971) Application of quantum estimation theory to analog communication over quantum chan- nels. IEEE Trans Inf Theory 17(3):240-246
- Pindyck RS, Roberts SM (1974) Optimal policies for monetary control. Ann Econ Soc Meas 3(1): 207-238
- Poor HV (1994) An introduction to signal detection and estimation, 2nd edn. Springer, New York. (first edition in 1988)
- Poor HV, Looze D (1981) Minimax state estimation for linear stochastic systems with noise uncertainty. IEEE Trans Autom Control 26(4):902-906
- Potter JE, Stern RG (1963) Statistical filtering of space navigation measurements. In: Proceedings of the 1963 AIAA Guidance and Control Conference, paper no. 63-333, Cambridge
- Ramm AG (2005) Random fields estimation. World Sci- entific, Hackensack
- Rao C (1945) Information and the accuracy attainable in the estimation of statistical parameters. Bull Calcutta Math Soc 37:81-89
- Rao CV, Rawlings JB, Lee JH (2001) Constrained linear state estimation -a moving horizon approach. Auto- matica 37(10):1619-1628
- Rao CV, Rawlings JB, Mayne DQ (2003) Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations. IEEE Trans Autom Control 48(2): 246-257
- Rauch HE (1963) Solutions to the linear smoothing prob- lem. IEEE Trans Autom Control 8(4): 371-372
- Rauch HE, Tung F, Striebel CT (1965) Maximum like- lihood estimates of linear dynamic systems. AIAA J 3(8):1445-1450
- Reid D (1979) An algorithm for tracking multiple targets. IEEE Trans Autom Control 24(6):843-854
- Riccati JF (1722) Animadversiones in aequationes differ- entiales secundi gradi. Actorum Eruditorum Lipsiae, Supplementa 8:66-73. Observations regarding differ- ential equations of second order, translation of the original Latin into English, by I. Bruce, 2007
- Riccati JF (1723) Appendix in animadversiones in aequa- tiones differentiales secundi gradi. Acta Eruditorum Lipsiae
- Ristic B (2013) Particle filters for random set models. Springer, New York
- Ristic B, Arulampalam S, Gordon N (2004) Beyond the Kalman filter: particle filters for tracking applications. Artech House, Boston
- Ristic B, Vo B-T, Vo B-N, Farina A (2013) A tutorial on Bernoulli filters: theory, implementation and applica- tions. IEEE Trans Signal Process 61(13):3406-3430
- Robinson EA (1963) Mathematical development of discrete filters for detection of nuclear explosions. J Geophys Res 68(19):5559-5567
- Roman WS, Hsu C, Habegger LT (1971) Parameter identi- fication in a nonlinear reactor system. IEEE Trans Nucl Sci 18(1):426-429
- Sage AP, Masters GW (1967) Identification and modeling of states and parameters of nuclear reactor systems. IEEE Trans Nucl Sci 14(1):279-285
- Sage AP, Melsa JL (1971) Estimation theory with appli- cations to communications and control. McGraw-Hill, New York
- Schmidt SF (1966) Application of state-space methods to navigation problems. Adv Control Syst 3:293-340
- Schmidt SF (1970) Computational techniques in Kalman filtering, NATO-AGARD-139
- Schonhoff TA, Giordano AA (2006) Detection and esti- mation theory and its applications. Pearson Prentice Hall, Upper Saddle River Schweppe FC (1968) Recursive state estimation with unknown but bounded errors and system inputs. IEEE Trans Autom Control 13(1):22-28
- Segall A (1976) Recursive estimation from discrete- time point processes. IEEE Trans Inf Theory 22(4): 422-431
- Servi L, Ho Y (1981) Recursive estimation in the presence of uniformly distributed measurement noise. IEEE Trans Autom Control 26(2):563-565
- Simon D (2006) Optimal state estimation -Kalman, H ∞ and nonlinear approaches. Wiley, New York Simpson HR (1963) Performance measures and optimiza- tion condition for a third-order tracker. IRE Trans Autom Control 8(2):182-183
- Sklansky J (1957) Optimizing the dynamic parameters of a track-while-scan system. RCA Rev 18:163-185
- Smeth P, Ristic B (2004) Kalman filter and joint tracking and classification in TBM framework. In: Proceedings of the 7th international conference on information fusion, Stockholm, pp 46-53
- Smith R, Self M, Cheeseman P (1986) Estimating uncer- tain spatial relationships in robotics. In: Proceedings of E the 2nd conference on uncertainty in artificial intelli- gence, Philadelphia, pp 435-461
- Snijders TAB, Koskinen J, Schweinberger M (2012) Max- imum likelihood estimation for social network dynam- ics. Ann Appl Stat 4(2):567-588
- Snyder DL (1968) The state-variable approach to contin- uous estimation with applications to analog communi- cations. MIT, Cambridge
- Snyder DL (1970) Estimation of stochastic intensity func- tions of conditional Poisson processes. Monograph no. 128, Biomedical Computer Laboratory, Washington University, St. Louis
- Söderström T (1994) Discrete-time stochastic system - estimation & control. Prentice Hall, New York
- Söderström T, Stoica P (1989) System identification. Pren- tice Hall, New York
- Sorenson HW, Alspach DL (1970) Gaussian sum approx- imations for nonlinear filtering. In: Proceedings of the 1970 IEEE Symposium on Adaptive Processes, Austin, TX pp 19.3.1-19.3.9
- Sorenson HW, Alspach DL (1971) Recursive Bayesian estimation using Gaussian sums. Automatica 7(4): 465-479
- Stankovic SS, Stankovic MS, Stipanovic DM (2009) Consensus based overlapping decentralized estimation with missing observations and communication faults. Automatica 45(6):1397-1406
- Stark L (1968) Neurological control systems studies in bioengineering. Plenum Press, New York Stengel PF (1994) Optimal control and estimation. Dover, New York. Originally published as Stochastic optimal control. Wiley, New York, 1986
- Stephant J, Charara A, Meizel D (2004) Virtual sensor: application to vehicle sideslip angle and transversal forces. IEEE Trans Ind Electron 51(2): 278-289
- Stratonovich RL (1959) On the theory of optimal nonlin- ear filtering of random functions. Theory Probab Appl 4:223-225
- Stratonovich RL (1960) Conditional Markov processes. Theory Probab Appl 5(2):156-178
- Taylor JH (1979) The Cramér-Rao estimation error lower bound computation for deterministic nonlin- ear systems. IEEE Trans Autom Control 24(2): 343-344
- Thrun S, Burgard W, Fox D (2006) Probabilistic robotics. MIT, Cambridge
- Tichavsky P, Muravchik CH, Nehorai A (1998) Posterior Cramér-Rao bounds for discrete-time nonlinear filter- ing. IEEE Trans Signal Process 6(5):1386-1396
- Toyoda J, Chen MS, Inoue Y (1970) An application of state estimation to short-term load forecasting, Part I: forecasting model and Part II: implementation. IEEE Trans Power Appar Syst 89(7):1678-1682 (Part I) and 1683-1688 (Part II)
- Tsybakov AB (2009) Introduction to nonparametric esti- mation. Springer, New York
- Tuncer TE, Friedlander B (2009) Classical and modern direction-of-arrival estimation. Academic, Burlington Tzafestas SG, Nightingale JM (1968) Optimal filter- ing, smoothing and prediction in linear distributed- parameter systems. Proc Inst Electr Eng 115(8): 1207-1212
- Ulam S (1952) Random processes and transformations. In: Proceedings of the International Congress of Math- ematicians, Cambridge, vol 2, pp 264-275
- Ulam S, Richtmeyer RD, von Neumann J (1947) Statis- tical methods in neutron diffusion, Los Alamos Scien- tific Laboratory report LAMS-551
- Van Trees H (1971) Detection, estimation and modulation theory -Parts I, II and III. Wiley, New York. Repub- lished in 2013
- van Trees HL, Bell KL (2007) Bayesian bounds for parameter estimation and nonlinear filtering/tracking. Wiley, Hoboken/IEEE, Piscataway
- Venerus JC, Bullock TE (1970) Estimation of the dynamic reactivity using digital Kalman filtering. Nucl Sci Eng 40:199-205
- Verdú S, Poor HV (1984) Minimax linear observers and regulators for stochastic systems with uncertain second-order statistics. IEEE Trans Autom Control 29(6):499-511
- Vicino A, Zappa G (1996) Sequential approximation of feasible parameter sets for identification with set membership uncertainty. IEEE Trans Autom Control 41(6):774-785
- Vo B-N, Ma WK (1996) The Gaussian mixture probability hypothesis density filter. IEEE Trans Signal Process 54(11):4091-4101
- Vo B-T, Vo B-N, Cantoni A (2007) Analytic implementa- tions of the cardinalized probability hypothesis density filter. IEEE Trans Signal Process 55(7):3553-3567
- Wakita H (1973) Estimation of the vocal tract shape by inverse optimal filtering. IEEE Trans Audio Electroa- coust 21(5):417-427
- Wertz W (1978) Statistical density estimation -a survey. Vandenhoeck and Ruprecht, Göttingen
- Wiener N (1949) Extrapolation, interpolation and smooth- ing of stationary time-series. MIT, Cambridge Willsky AS (1976) A survey of design methods for fail- ure detection in dynamic systems. Automatica 12(6): 601-611
- Wonham WM (1965) Some applications of stochastic differential equations to optimal nonlinear filtering. SIAM J Control 2(3):347-369
- Woods JW, Radewan C (1977) Kalman filtering in two dimensions. IEEE Trans Inf Theory 23(4): 473-482
- Xiao L, Boyd S, Lall S (2005) A scheme for robust distributed sensor fusion based on average consensus. In: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks, Los Angeles, pp 63-70
- Zachrisson LE (1969) On optimal smoothing of continuous-time Kalman processes. Inf Sci 1(2): 143-172
- Zellner A (1971) An introduction to Bayesian inference in econometrics. Wiley, New York Bibliography
- Araujo J, Mazo M Jr, Anta A, Tabuada P, Johans- son KH (2014) System architectures, protocols, and algorithms for aperiodic wireless control systems. Industrial Informatics, IEEE Trans Ind Inform. 10(1): 175-184
- Årzén K-E (1999) A simple event-based PID controller. In: Proceedings of the IFAC World Congress, Beijing, China, vol 18, pp 423-428. Preprints
- Åström KJ, Bernhardsson BM (1999) Comparison of peri- odic and event based sampling for first order stochastic systems. In: Proceedings of the IFAC World Congress, Beijing, China, pp 301-306
- Aström, KJ, Wittenmark B (1997) Computer controlled systems. Prentice Hall, Upper Saddle River De Persis C, Sailer R, Wirth F (2013) Parsimonious event- triggered distributed control: a Zeno free approach. Automatica 49(7):2116-2124
- Dimarogonas DV, Frazzoli E, Johansson KH (2012) Distributed event-triggered control for multi-agent systems. IEEE Trans Autom Control 57(5):1291- 1297
- Donkers MCF, Heemels WPMH (2010) Output-based event-triggered control with guaranteed L ∞ -gain and improved event-triggering. In: Proceedings of the IEEE conference on decision and control, Atlanta, Georgia, USA, pp 3246-3251
- Donkers MCF, Heemels WPMH (2012) Output-based event-triggered control with guaranteed L ∞ -gain and improved and decentralised event-triggering. IEEE Trans Autom Control 57(6): 1362-1376
- Franklin GF, Powel JD, Emami-Naeini A (2010) Feed- back control of dynamical systems. Prentice Hall, Upper Saddle River
- Garcia E, Antsaklis PJ (2013) Model-based event- triggered control for systems with quantization and time-varying network delays. IEEE Trans Autom Con- trol 58(2):422-434
- Goebel R, Sanfelice R, Teel AR (2009) Hybrid dynamical systems. IEEE Control Syst Mag 29: 28-93
- Gupta S (1963) Increasing the sampling efficiency for a control system. IEEE Trans Autom Control 8(3): 263-264
- Heemels WPMH, Donkers MCF (2013) Model-based periodic event-triggered control for linear systems. Automatica 49(3):698-711
- Heemels WPMH, Sandee JH, van den Bosch PPJ (2008) Analysis of event-driven controllers for linear systems. Int J Control 81:571-590
- Heemels WPMH, Donkers MCF, Teel AR (2013) Periodic event-triggered control for linear systems. IEEE Trans Autom Control 58(4):847-861
- Henningsson T, Johannesson E, Cervin A (2008) Sporadic event-based control of first-order linear stochastic sys- tems. Automatica 44:2890-2895
- Lehmann D, Kiener GA, Johansson KH (2012) Event- triggered PI control: saturating actuators and anti- windup compensation. In: Proceedings of the IEEE conference on decision and control, Maui
- Lunze J, Lehmann D (2010) A state-feedback approach to event-based control. Automatica 46:211-215
- Mazo M Jr, Tabuada P (2011) Decentralized event- triggered control over wireless sensor/actuator net- works. IEEE Trans Autom Control 56(10):2456-2461. Special issue on Wireless Sensor and Actuator Net- works
- Miskowicz M (2006) Send-on-delta concept: an event- based data-reporting strategy. Sensors 6: 49-63
- Olfati-Saber R, Fax JA, Murray RM (2007) Consensus and cooperation in networked multi-agent systems. Proc IEEE 95(1):215-233
- Postoyan R, Anta A, Nešić D, Tabuada P (2011) A unify- ing Lyapunov-based framework for the event-triggered control of nonlinear systems. In: Proceedings of the joint IEEE conference on decision and control and European control conference, Orlando, pp 2559-2564
- Seyboth GS, Dimarogonas DV, Johansson KH (2013) Event-based broadcasting for multi-agent average con- sensus. Automatica 49(1):245-252
- Shi G, Johansson KH (2011) Multi-agent robust consensus-part II: application to event-triggered coor- dination. In: Proceedings of the IEEE conference on decision and control, Orlando
- Tabuada P (2007) Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans Autom Control 52(9):1680-1685
- Tallapragada P, Chopra N (2012a) Event-triggered decen- tralized dynamic output feedback control for LTI sys- tems. In: IFAC workshop on distributed estimation and control in networked systems, pp 31-36
- Tallapragada P, Chopra N (2012b) Event-triggered dynamic output feedback control for LTI systems. In: IEEE 51st annual conference on decision and control (CDC), Maui, pp 6597-6602
- Teixeira PV, Dimarogonas DV, Johansson KH, Borges de Sousa J (2010) Event-based motion coordination of multiple underwater vehicles under disturbances. In: IEEE OCEANS, Sydney
- Velasco M, Marti P, Fuertes JM (2003) The self triggered task model for real-time control sys- tems. In: Proceedings of 24th IEEE real-time sys- tems symposium, work-in-progress session, Cancun, Mexico
- Wang X, Lemmon MD (2011) Event-triggering in distributed networked systems with data dropouts and delays. IEEE Trans Autom Control 586-601
- Yook JK, Tilbury DM, Soparkar NR (2002) Trad- ing computation for bandwidth: reducing commu- nication in distributed control systems using state estimators. IEEE Trans Control Syst Technol 10(4): 503-518
- Agüero JC, Goodwin GC (2007) Choosing between open and closed loop experiments in linear system identifi- cation. IEEE Trans Autom Control 52(8):1475-1480
- Bombois X, Scorletti G, Gevers M, Van den Hof PMJ, Hildebrand R (2006) Least costly identification experi- ment for control. Automatica 42(10):1651-1662
- Fedorov VV (1972) Theory of optimal experiments. Prob- ability and mathematical statistics, vol 12. Academic, New York
- Forssell U, Ljung L (1999) Closed-loop identification revisited. Automatica 35:1215-1241
- Fujimoto Y, Maruta I, Sugie T (2018) Input design for kernel-based system identification from the viewpoint of frequency response. IEEE Trans Autom Control 63(9):3075-3082
- Gevers M (2005) Identification for control: from the early achievements to the revival of experiment design. Eur J Control 11(4-5):335-352. Semi-plenary lecture at IEEE conference on decision and control -European control conference
- Gevers M, Ljung L (1986) Optimal experiment designs with respect to the intended model application. Auto- matica 22(5):543-554
- Gevers M, Bombois X, Codrons B, Scorletti G, Anderson BDO (2003) Model validation for control and con- troller validation in a prediction error identification framework -part I: theory. Automatica 39(3):403-445
- Goodwin GC, Payne RL (1977) Dynamic system identifi- cation: experiment design and data analysis. Academic, New York
- Hjalmarsson H (2005) From experiment design to closed loop control. Automatica 41(3):393-438
- Hjalmarsson H (2009) System identification of complex and structured systems. Eur J Control 15(4):275-310. Plenary address. European control conference
- Jansson H, Hjalmarsson H (2005) Input design via LMIs admitting frequency-wise model specifications in confidence regions. IEEE Trans Autom Control 50(10):1534-1549
- Larsson CA, Hjalmarsson H, Rojas CR, Bombois X, Mesbah A, Modén P-E (2013) Model predictive control with integrated experiment design for output error systems. In: European control conference, Zurich Ljung L (1999) System identification: theory for the user, 2nd edn. Prentice-Hall, Englewood Cliffs Manchester IR (2010) Input design for system identifica- tion via convex relaxation. In: 49th IEEE conference on decision and control, Atlanta, pp 2041-2046
- Pintelon R, Schoukens J (2012) System identification: a frequency domain approach, 2nd edn. Wiley/IEEE, Hoboken/Piscataway
- Pronzato L (2008) Optimal experimental design and some related control problems. Automatica 44(2):303-325
- Rathouský J, Havlena V (2013) MPC-based appro- ximate dual controller by information matrix max- imization. Int J Adapt Control Signal Process 27(11):974-999
- Raynaud HF, Pronzato L, Walter E (2000) Robust iden- tification and control based on ellipsoidal parametric uncertainty descriptions. Eur J Control 6(3):245-255
- Rivera DE, Lee H, Mittelmann HD, Braun MW (2009) Constrained multisine input signals for plant-friendly identification of chemical process systems. J Process Control 19(4):623-635
- Rojas CR, Agüero JC, Welsh JS, Goodwin GC (2008) On the equivalence of least costly and traditional experi- ment design for control. Automatica 44(11):2706-2715
- Rojas CR, Welsh JS, Agüero JC (2009) Fundamental limitations on the variance of parametric models. IEEE Trans Autom Control 54(5):1077-1081
- Zarrop M (1979) Optimal experiment design for dynamic system identification. Lecture notes in control and information sciences, vol 21. Springer, Berlin Bibliography
- Alessio A, Bemporad A (2009) A survey on explicit model predictive control. In: Magni L, Raimondo DM, Allgower F (eds) Nonlinear model predictive control: towards new challenging applications. Lecture notes in control and information sciences, vol 384. Springer, Berlin/Heidelberg, pp 345-369
- Banjac G, Stellato B, Moehle N, Goulart P, Bemporad A, Boyd S (2017) Embedded code generation using the OSQP solver. IEEE Conference on Decision and Control, Melbourne, pp 1906-1911
- Baotić M (2002) An efficient algorithm for multi- parametric quadratic programming. Technical Report AUT02-05, Automatic Control Institute, ETH, Zurich Bemporad A (2003) Hybrid toolbox -user's guide. http:// cse.lab.imtlucca.it/ ∼ bemporad/hybrid/toolbox
- Bemporad A (2015) A multiparametric quadratic pro- gramming algorithm with polyhedral computations based on nonnegative least squares. IEEE Trans Autom Control 60(11):2892-2903
- Bemporad A (2016) A quadratic programming algorithm based on nonnegative least squares with applications to embedded model predictive control. IEEE Trans Autom Control 61(4):1111-1116
- Bemporad A, Borrelli F, Morari M (2000) Piecewise linear optimal controllers for hybrid systems. In: Proceedings of American Control Conference, Chicago, pp 1190- 1194
- Bemporad A, Borrelli F, Morari M (2002a) Model predic- tive control based on linear programming -the explicit solution. IEEE Trans Autom Control 47(12):1974- 1985
- Bemporad A, Morari M, Dua V, Pistikopoulos E (2002b) The explicit linear quadratic regulator for constrained systems. Automatica 38(1):3-20
- Bemporad A, Borrelli F, Morari M (2003) Min-max control of constrained uncertain discrete-time linear systems. IEEE Trans Autom Control 48(9):1600-1606
- Bemporad A, Morari M, Ricker N (2014) Model predic- tive control toolbox for MATLAB -User's guide. The Mathworks, Inc. http://www.mathworks.com/access/ helpdesk/help/toolbox/mpc/
- Borrelli F, Baotić M, Bemporad A, Morari M (2005) Dynamic programming for constrained optimal con- trol of discrete-time linear hybrid systems. Automatica 41(10):1709-1721
- Borrelli F, Bemporad A, Morari M (2017) Predictive control for linear and hybrid systems. Cambridge Uni- versity Press, Cambridge/New York
- Cimini G, Bemporad A (2017) Exact complexity certifica- tion of active-set methods for quadratic programming. IEEE Trans Autom Control 62(12):6094-6109
- Fuchs A, Axehill D, Morari M (2015) Lifted evaluation of mp-MIQP solutions. IEEE Trans Autom Control 60(12):3328-3331
- Geyer T, Torrisi F, Morari M (2008) Optimal complex- ity reduction of polyhedral piecewise affine systems. Automatica 44:1728-1740
- Gupta A, Bhartiya S, Nataraj PSV (2011) A novel approach to multiparametric quadratic programming. Automatica 47(9):2112-2117
- Jones C, Morari M (2006) Multiparametric linear com- plementarity problems. In: Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, pp 5687-5692
- Kvasnica M, Grieder P, Baotić M (2006) Multi parametric toolbox (MPT). http://control.ee.ethz.ch/ ∼ mpt/ E
- Mayne D, Rawlings J (2009) Model predictive control: theory and design. Nob Hill Publishing, LCC, Madison Patrinos P, Bemporad A (2014) An accelerated dual gradient-projection algorithm for embedded linear model predictive control. IEEE Trans Autom Control 59(1):18-33
- Patrinos P, Sarimveis H (2010) A new algorithm for solv- ing convex parametric quadratic programs based on graphical derivatives of solution mappings. Automatica 46(9):1405-1418
- Ricker N (1985) Use of quadratic programming for con- strained internal model control. Ind Eng Chem Process Des Dev 24(4):925-936
- Spjøtvold J, Kerrigan E, Jones C, Tøndel P, Johansen TA (2006) On the facet-to-facet property of solutions to convex parametric quadratic programs. Automatica 42(12):2209-2214
- Tøndel P, Johansen TA, Bemporad A (2003a) An algo- rithm for multi-parametric quadratic programming and explicit MPC solutions. Automatica 39(3):489-497
- Tøndel P, Johansen TA, Bemporad A (2003b) Evaluation of piecewise affine control via binary search tree. Auto- matica 39(5):945-950
- Wang Y, Boyd S (2010) Fast model predictive control using online optimization. IEEE Trans Control Syst Technol 18(2):267-278
- E Bibliography
- Crisan D, Rozovskii B (eds) (2011) The Oxford hand- book of nonlinear filtering. Oxford University Press, Oxford/New York
- Daum FE, Fitzgerald RJ (1983) Decoupled Kalman filters for phased array radar tracking. IEEE Trans Autom Control 28:269-283
- Gelb A et al (1974) Applied optimal estimation. MIT, Cambridge
- Markley FL, Crassidis JL, Cheng Y (2007) Nonlinear attitude filtering methods. AIAA J 30:12-28
- Mehra R (1971) A comparison of several nonlinear filters for reentry vehical tracking. IEEE Trans Autom Con- trol 16:307-310
- Miller KS, Leskiw D (1982) Nonlinear observations with radar measurements. IEEE Trans Aerosp Electron Syst 2:192-200
- Ristic B, Arulampalam S, Gordon N (2004) Beyond the Kalman filter. Artech House, Boston
- Schuster MD (1993) A survey of attitude representations. J Astronaut Sci 41:439-517
- Sorenson H (ed) (1985) Kalman filtering: theory and application. IEEE, New York
- Stallard T (1991) Angle-only tracking filter in modified spherical coordinates. AIAA J Guid 14:694-696
- Tanizaki H (1996) Nonlinear filters, 2nd edn. Springer, Berlin/New York Bibliography
- Baronov D, Baillieul J (2011) A motion description lan- guage for robotic reconnaissance of unknown fields. Eur J Control 17:512-525
- Cochran J, Krstic M (2009) Nonholonomic source seeking with tuning of angular velocity. IEEE Trans Autom Control 54:717-731
- Ghaffari A, Krstic M, Seshagiri S (2014a) Power opti- mization for photovoltaic micro-converters using mul- tivariable Newton-based extremum seeking. IEEE Trans Control Syst Technol 22:2141-2149
- Ghaffari A, Krstic M, Seshagiri S (2014b) Power opti- mization and control in wind energy conversion sys- tems using extremum seeking. IEEE Trans Control Syst Technol 22:1684-1695
- Krstic M, Wang HH (2000) Stability of extremum seeking feedback for general dynamic systems. Automatica 36:595-601
- Liu S-J, Krstic M (2010a) Stochastic averaging in continuous time and its applications to extremum seeking. IEEE Trans Autom Control 55: 2235-2250
- Liu S-J, Krstic M (2010b) Stochastic source seek- ing for nonholonomic unicycle. Automatica 46: 1443-1453
- Liu S-J, Krstic M (2012) Stochastic averaging and stochastic extremum seeking. Springer, London/New York Tan Y, Nesic D, Mareels I (2006) On non-local stability properties of extremum seeking control. Automatica 42:889-903