Reconstructing words from a fixed palindromic length sequence
2008
https://doi.org/10.1007/978-0-387-09680-3_7Abstract
To every word ω is associated a sequence Gω built by computing at each position i the length of its longest palindromic suffix. This sequence is then used to compute the palindromic defect of a finite word Ω defined by D(Ω) = |Ω|+1−|Pal(Ω)| where Pal(Ω) is the set of its palindromic factors. In this paper we exhibit some properties of this sequence and introduce the problem of reconstructing a word from GΩ. In particular we show that up to a relabelling the solution is unique for 2‐letter alphabets.
References (28)
- Aberkane, A. and Brlek, S. (2002) Suites de même complexité que celle de Thue- Morse, Actes des Journées Montoises d'informatique théorique (9-11 septembre 2002, Montpellier, France) 85-89.
- Aberkane, A., Brlek, S. and Glen, A. (2007) Sequences having the Thue-Morse complexity, Disc. Math. 15p. (submitted)
- Allouche, J.-P. (1994) Sur la complexité des suites infinies, Bull. Belg. Math. Soc. 1:133-143.
- Allouche, J.P. (1997) Schrödinger operators with Rudin-Shapiro potentials are not palindromic, J. Math. Phys. 38:1843-1848.
- Allouche, J.P., Baake, M., Cassaigne, J., and Damanik, D. (2003) Palindrome complexity, Theoret. Comput. Sci. 292:9-31.
- Allouche, J.P., and Shallit, J. (2000) Sums of digits, overlaps, and palindromes, Disc. Math. and Theoret. Comput. Sci. 4:1-10.
- Baake, M. (1999) A note on palindromicity, Lett. Math. Phys. 49:217-227.
- Blondin Massé, A., Brlek, S., and Labbé, S. (2008) Palindromic lacunas of the Thue-Morse word, GASCOM 2008 (To appear)
- Fici, G., Mignosi, F., Restivo, A. and Sciortino, M. (2006) Word assembly through minimal forbidden words,Theoret. Comput. Sci., 359/1-3: 214-230.
- Brlek, S. (1989) Enumeration of factors in the Thue-Morse word, Disc. Appl. Math. 24:83-96.
- Brlek, S., Hamel, S., Nivat, M., and Reutenauer, C. (2004) On the Palindromic Complexity of Infinite Words, in J. Berstel, J. Karhumäki, D. Perrin, Eds, Combi- natorics on Words with Applications, Int. J. of Found. of Comput. Sci., 15/2:293- 306
- Brlek, S., and Ladouceur, A. (2003) A note on differentiable palindromes, Theoret. Comput. Sci. 302:167-178.
- Brlek, S., Jamet, D., and Paquin, G., (2008) Smooth Words on 2-letter alphabets having same parity, Theoret. Comput. Sci. 393/1-3:166181.
- Brlek, S., Dulucq, S., Ladouceur, A. and Vuillon L. (2006) Combinatorial prop- erties of smooth infinite words, Theoret. Comput. Sci. 352/1-3:306-317.
- de Bruijn N. G. (1946) A Combinatorial Problem, Koninklijke Nederlandse Akademie v. Wetenschappen 49: 758764.
- Droubay, X., Justin, J., and Pirillo, G. (2001) Episturmian words and some con- structions of de Luca and Rauzy, Theoret. Comput. Sci. 255:539-553.
- Flye Sainte-Marie, C. (1894). Question 48, L'Intermdiaire Math. 1: 107110.
- Fredericksen, H. and Maiorana, J. (1978) Necklaces of beads in k colors and k-ary de Bruijn sequences Disc. Math. 23/3, 207-210
- Good, I. J. (1946) Normal recurring decimals, J. London Math. Soc. 21 (3): 167- 169.
- Hof, A., Knill, O., and Simon, B. (1995) Singular continuous spectrum for palin- dromic Schrödinger operators, Commun. Math. Phys. 174:149-159.
- Lothaire M. (1983) Combinatorics on words, Addison-Wesley.
- Lothaire, M. (2002) Algebraic Combinatorics on words, Cambridge University Press.
- de Luca, A. (1997) Sturmian words: structure, combinatorics, and their arith- metics, Theoret. Comput. Sci. 183:45-82.
- de Luca, A. , and Varricchio, S. (1989) Some combinatorial properties of the Thue-Morse sequence, Theoret. Comput. Sci. 63:333-348.
- Mantaci, S., Restivo, A., Rosone, G. and Sciortino, M. (2008) A New Combina- torial Approach to Sequence ComparisonTheory Comput. Syst. 42/3:411-429.
- Manvel, B., Meyerowitz, A., Schwenk*, A., Smith, K. and Stockmeyer, P. (1991) Reconstruction of sequences, Disc. Math. 94/3: 209-219.
- Mignosi, F. (1991) On the number of factors of Sturmian words, Theoret. Comput. Sci. 82/1: 71-84.
- Morse, M. and Hedlund, G. (1940) Symbolic Dynamics II. Sturmian trajectories, Amer. J. Math. 62:1-42.