Academia.eduAcademia.edu

Outline

Sandy coastlines under threat of erosion

Nature Climate Change

https://doi.org/10.1038/S41558-020-0697-0

Abstract

Sandy beaches occupy more than one-third of the global coastline 1 and have high socioeconomic value related to recreation, tourism and ecosystem services 2. Beaches are the interface between land and ocean, providing coastal protection from marine storms and cyclones 3. However the presence of sandy beaches cannot be taken for granted, as they are under constant change, driven by meteorological 4,5 , geological 6 and anthropogenic factors 1,7. A substantial proportion of the world's sandy coastline is already eroding 1,7 , a situation that could be exacerbated by climate change 8,9. Here, we show that ambient trends in shoreline dynamics, combined with coastal recession driven by sea level rise, could result in the near extinction of almost half of the world's sandy beaches by the end of the century. Moderate GHG emission mitigation could prevent 40% of shoreline retreat. Projected shoreline dynamics are dominated by sea level rise for the majority of sandy beaches, but in certain regions the erosive trend is counteracted by accretive ambient shoreline changes; for example, in the Amazon, East and Southeast Asia and the north tropical Pacific. A substantial proportion of the threatened sandy shorelines are in densely populated areas, underlining the need for the design and implementation of effective adaptive measures. The coastal zone is among the most developed areas worldwide, containing an abundance of developments, critical infrastructure 10 and ecosystems 2,3. As a result, population density tends to be higher near the coast 11. Most projections indicate that current trends of coastward migration, urbanization and population growth will continue 12,13. Of the different beach typologies found worldwide sandy beaches are the most heavily used 14 and are among the most geomorphologically complex, with the shoreline (the mean water line along the coast) changing constantly under forcing-response interactions between natural and anthropogenic factors 7. The global mean sea level has been increasing at an accelerated rate during the past 25 years 15 and will continue to do so with climate change 16,17. While shoreline change can be the combined result of a wide range of potentially erosive or accretive factors 8 , there is a clear cause and effect relationship between increasing sea levels and shoreline retreat 18 , pointing to increased coastal erosion issues 9,19. Climate change will also affect waves and storm surges 20,21 , which are important drivers of coastal morphology 4,5,22. Therefore, considering the dynamics of extreme weather patterns is also important in assessing potential climate change impacts beyond that of sea-level rise (SLR) alone. Here, we present a comprehensive global analysis of sandy shoreline dynamics during the twenty-first century. Our probabilistic

Key takeaways
sparkles

AI

  1. Nearly half of the world's sandy beaches may face extinction by 2100 due to rising sea levels.
  2. Moderate greenhouse gas (GHG) emission mitigation could prevent 40% of shoreline retreat by century's end.
  3. Projected shoreline changes indicate global average retreats between 164.2 to 240 m under high-emission scenarios by 2100.
  4. Increased urbanization near coastlines exacerbates vulnerability to erosion, impacting socioeconomic stability.
  5. Severe erosion threats affect 35.7-49.5% of sandy beaches by 2100, especially in densely populated areas.

References (114)

  1. Luijendijk, A. et al. The state of the world's beaches. Sci. Rep. 8, 6641 (2018).
  2. Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169-193 (2011).
  3. Temmerman, S. et al. Ecosystem-based coastal defence in the face of global change. Nature 504, 79-83 (2013).
  4. Masselink, G. et al. Extreme wave activity during 2013/2014 winter and morphological impacts along the Atlantic coast of Europe. Geophys. Res. Lett. 43, 2135-2143 (2016).
  5. Barnard, P. L. et al. Coastal vulnerability across the Pacific dominated by El Niño/Southern oscillation. Nat. Geosci. 8, 801-807 (2015).
  6. Cooper, J. A. G., Green, A. N. & Loureiro, C. Geological constraints on mesoscale coastal barrier behaviour. Glob. Planet. Change 168, 15-34 (2018).
  7. Mentaschi, L., Vousdoukas, M. I., Pekel, J.-F., Voukouvalas, E. & Feyen, L. Global long-term observations of coastal erosion and accretion. Sci. Rep. 8, 12876 (2018).
  8. Ranasinghe, R. Assessing climate change impacts on open sandy coasts: a review. Earth Sci. Rev. 160, 320-332 (2016).
  9. Hinkel, J. et al. A global analysis of erosion of sandy beaches and sea-level rise: an application of DIVA. Glob. Planet. Change 111, 150-158 (2013).
  10. Koks, E. E. et al. A global multi-hazard risk analysis of road and railway infrastructure assets. Nat. Commun. 10, 2677 (2019).
  11. McGranahan, G., Balk, D. & Anderson, B. The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 19, 17-37 (2007).
  12. Neumann, B., Vafeidis, A. T., Zimmermann, J. & Nicholls, R. J. Future coastal population growth and exposure to sea-level rise and coastal flooding-a global assessment. PLoS ONE 10, e0118571 (2015).
  13. Jones, B. & O'Neill, B. C. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environ. Res. Lett. 11, 8 (2016).
  14. Davenport, J. & Davenport, J. L. The impact of tourism and personal leisure transport on coastal environments: a review. Estuar. Coast. Shelf Sci. 67, 280-292 (2006).
  15. Nerem, R. S. et al. Climate-change-driven accelerated sea-level rise detected in the altimeter era. Proc. Natl Acad. Sci. USA 115, 2022-2025 (2018).
  16. Bamber, J. L., Oppenheimer, M., Kopp, R. E., Aspinall, W. P. & Cooke, R. M. Ice sheet contributions to future sea-level rise from structured expert judgment. Proc. Natl Acad. Sci. USA 116, 11195-11200 (2019).
  17. Jevrejeva, S., Jackson, L. P., Riva, R. E. M., Grinsted, A. & Moore, J. C. Coastal sea level rise with warming above 2 °C. Proc. Natl Acad. Sci. USA 113, 13342-13347 (2016).
  18. Bruun, P. Sea level rise as a cause of shore erosion. J. Waterw. Harb. Div. 88, 117-130 (1962).
  19. Anthony, E. J. et al. Linking rapid erosion of the Mekong river delta to human activities. Sci. Rep. 5, 14745 (2015).
  20. Vousdoukas, M. I. et al. Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nat. Commun. 9, 2360 (2018).
  21. Hemer, M. A., Fan, Y., Mori, N., Semedo, A. & Wang, X. L. Projected changes in wave climate from a multi-model ensemble. Nat. Clim. Change 3, 471-476 (2013).
  22. Slott, J. M., Murray, A. B., Ashton, A. D. & Crowley, T. J. Coastline responses to changing storm patterns. Geophys. Res. Lett. 33, https://doi. org/10.1029/2006GL027445 (2006).
  23. Athanasiou, P. et al. Global distribution of nearshore slopes with implications for coastal retreat. Earth Syst. Sci. Data 11, 1515-1529 (2019).
  24. Kriebel, D. L. & Dean, R. G. Convolution method for time dependent beach profile response. J. Waterw. Port Coast. Ocean Eng. 119, 204-226 (1993).
  25. Vousdoukas, M. I. Erosion/accretion patterns and multiple beach cusp systems on a meso-tidal, steeply-sloping beach. Geomorphology 141, 34-46 (2012).
  26. Anderson, T. R., Frazer, L. N. & Fletcher, C. H. Transient and persistent shoreline change from a storm. Geophys. Res. Lett. 37, L08401 (2010).
  27. Erikson, L. H., Hegermiller, C. A., Barnard, P. L., Ruggiero, P. & van Ormondt, M. Projected wave conditions in the Eastern North Pacific under the influence of two CMIP5 climate scenarios. Ocean Model. 96, 171-185 (2015).
  28. Mentaschi, L., Vousdoukas, M. I., Voukouvalas, E., Dosio, A. & Feyen, L. Global changes of extreme coastal wave energy fluxes triggered by intensified teleconnection patterns. Geophys. Res. Lett. 44, 2416-2426 (2017).
  29. Small, C. & Nicholls, R. J. A global analysis of human settlement in coastal zones. J. Coast. Res. 19, 584-599 (2003).
  30. Milliman, J. D. Blessed dams or damned dams? Nature 386, 325-327 (1997).
  31. Ranasinghe, R., Wu, C. S., Conallin, J., Duong, T. M. & Anthony, E. J. Disentangling the relative impacts of climate change and human activities on fluvial sediment supply to the coast by the world's large rivers: Pearl River Basin, China. Sci. Rep. 9, 9236 (2019).
  32. Brière, C., Janssen, S. K. H., Oost, A. P., Taal, M. & Tonnon, P. K. Usability of the climate-resilient nature-based sand motor pilot, the Netherlands. J. Coast. Conserv. 22, 491-502 (2018).
  33. Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213-241 (2011).
  34. Hurst, M. D., Rood, D. H., Ellis, M. A., Anderson, R. S. & Dornbusch, U. Recent acceleration in coastal cliff retreat rates on the south coast of Great Britain. Proc. Natl Acad. Sci. USA 113, 13336-13341 (2016).
  35. Ruggiero, P. Is the intensifying wave climate of the U.S. Pacific Northwest increasing flooding and erosion risk faster than sea-level rise? J. Waterw. Port Coast. Ocean Eng. 139, 88-97 (2013).
  36. Loureiro, C., Ferreira, Ó. & Cooper, J. A. G. Extreme erosion on high-energy embayed beaches: influence of megarips and storm grouping. Geomorphology 139-140, 155-171 (2012).
  37. Kroon, A. et al. Statistical analysis of coastal morphological data sets over seasonal to decadal time scales. Coast. Eng. 55, 581-600 (2008).
  38. Gallop, S. L., Bosserelle, C., Pattiaratchi, C. & Eliot, I. Rock topography causes spatial variation in the wave, current and beach response to sea breeze activity. Mar. Geol. 290, 29-40 (2011).
  39. Vousdoukas, M. I., Velegrakis, A. F. & Plomaritis, T. A. Beachrock occurrence, characteristics, formation mechanisms and impacts. Earth Sci. Rev. 85, 23-46 (2007).
  40. Vousdoukas, M. I., Almeida, L. P. & Ferreira, Ó. Beach erosion and recovery during consecutive storms at a steep-sloping, meso-tidal beach. Earth Surf. Process. Landf. 37, 583-691 (2012).
  41. Ranasinghe, R., Callaghan, D. & Stive, M. J. F. Estimating coastal recession due to sea level rise: beyond the Bruun rule. Clim. Change 110, 561-574 (2012).
  42. Coco, G. et al. Beach response to a sequence of extreme storms. Geomorphology 204, 493-501 (2014).
  43. Hardisty, J. in Sediment Transport and Depositional Processes (Ed. Pye, K.) 216-255 (Blackwell, 1994).
  44. Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418-422 (2016).
  45. Haklay, M. & Weber, P. OpenStreetMap: user-generated street maps. IEEE Pervasive Comput. 7, 12-18 (2008).
  46. Boak, E. H. & Turner, I. L. Shoreline definition and detection: a review. J. Coast. Res. 21, 688-703 (2005).
  47. Jackson, L. P. & Jevrejeva, S. A probabilistic approach to 21st century regional sea-level projections using RCP and high-end scenarios. Glob. Planet. Change 146, 179-189 (2016).
  48. Yamazaki, D. et al. A high-accuracy map of global terrain elevations. Geophys. Res. Lett. 44, 5844-5853 (2017).
  49. Weatherall, P. et al. A new digital bathymetric model of the world's oceans. Earth Space Sci. 2, 331-345 (2015).
  50. Hallermeier, R. J. Uses for a calculated limit depth to beach erosion. In Proc. 16th International Conference on Coastal Engineering 1493-1512 (American Society of Civil Engineers, 1978).
  51. Nicholls, R. J., Birkemeier, W. A. & Lee, G.-h Evaluation of depth of closure using data from Duck, NC, USA. Mar. Geol. 148, 179-201 (1998).
  52. Baron, H. M. et al. Incorporating climate change and morphological uncertainty into coastal change hazard assessments. Nat. Hazards 75, 2081-2102 (2015).
  53. Ranasinghe, R., Duong, T. M., Uhlenbrook, S., Roelvink, D. & Stive, M. Climate-change impact assessment for inlet-interrupted coastlines. Nat. Clim. Change 3, 83-87 (2012).
  54. Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M. & Feyen, L. Extreme sea levels on the rise along Europe's coasts. Earth's Future https://doi.org/10.1002/2016EF000505 (2017).
  55. Queffeulou, P. & Croizé-Fillon, D. Global Altimeter SWH Dataset (Laboratoire d'Océanographie Spatiale, IFREMER, 2014).
  56. Li, F. Probabilistic Estimation of Dune Erosion and Coastal Zone Risk. PhD thesis, Delft Univ. Technology (2014).
  57. Toimil, A., Losada, I. J., Camus, P. & Díaz-Simal, P. Managing coastal erosion under climate change at the regional scale. Coast. Eng. 128, 106-122 (2017).
  58. Le Cozannet, G. et al. Quantifying uncertainties of sandy shoreline change projections as sea level rises. Sci. Rep. 9, 42 (2019).
  59. Lentz, E. E. et al. Evaluation of dynamic coastal response to sea-level rise modifies inundation likelihood. Nat. Clim. Change 6, 696-700 (2016).
  60. Muis, S., Verlaan, M., Winsemius, H. C., Aerts, J. C. J. H. & Ward, P. J. A global reanalysis of storm surges and extreme sea levels. Nat. Commun. 7, 11969 (2016).
  61. Coastal Engineering Manual Part II, Ch. 2 (US Army Corps of Engineers, 2002).
  62. Mentaschi, L. et al. Non-stationary extreme value analysis: a simplified approach for earth science applications. Hydrol. Earth Syst. Sci. Discuss. 2016, 1-38 (2016).
  63. Corbane, C. et al. Big earth data analytics on Sentinel-1 and Landsat imagery in support to global human settlements mapping. Big Earth Data 1, 118-144 (2017).
  64. IPCC (eds Field, C. B. et al.) Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (Cambridge Univ. Press, 2012).
  65. Antolínez, J. A. A. et al. A multiscale climate emulator for long-term morphodynamics (MUSCLE-morpho). J. Geophys. Res. Oceans 121, 775-791 (2016).
  66. Enríquez, A. R., Marcos, M., Álvarez-Ellacuría, A., Orfila, A. & Gomis, D. Changes in beach shoreline due to sea level rise and waves under climate change scenarios: application to the Balearic Islands (western Mediterranean). Nat. Hazards Earth Syst. Sci. 17, 1075-1089 (2017).
  67. Anderson, D., Ruggiero, P., Antolínez, J. A. A., Méndez, F. J. & Allan, J. A climate index optimized for longshore sediment transport reveals interannual and multidecadal littoral cell rotations. J. Geophys. Res. Earth Surf. 123, 1958-1981 (2018).
  68. Giardino, A. et al. A quantitative assessment of human interventions and climate change on the West African sediment budget. Ocean Coast. Manag. 156, 249-265 (2018).
  69. Vitousek, S., Barnard, P. L., Limber, P., Erikson, L. & Cole, B. A model integrating longshore and cross-shore processes for predicting long-term shoreline response to climate change. J. Geophys. Res. Earth Surf. 122, 782-806 (2017).
  70. Wainwright, D. J. et al. Moving from deterministic towards probabilistic coastal hazard and risk assessment: development of a modelling framework and application to Narrabeen Beach, New South Wales, Australia. Coast. Eng. 96, 92-99 (2015).
  71. Ranasinghe, R. & Stive, M. J. F. Rising seas and retreating coastlines. Clim. Change 97, 465 (2009).
  72. Davidson, M. A., Splinter, K. D. & Turner, I. L. A simple equilibrium model for predicting shoreline change. Coast. Eng. 73, 191-202 (2013).
  73. Ozkan-Haller, T. & Brundidge, S. Equilibrium beach profiles for Delaware beaches. J. Waterw. Port Coast. Ocean Eng . 133, 147-160 (2007).
  74. Cooper, J. A. G. & Pilkey, O. H. Sea-level rise and shoreline retreat: time to abandon the Bruun Rule. Glob. Planet. Change 43, 157-171 (2004).
  75. Pilkey, O. H. & Dixon, K. L. The Corps and the Shore (Island Press, 1996).
  76. Pilkey, O. H. et al. The concept of shoreface profile of equilibrium: a critical review. J. Coast. Res. 9, 225-278 (1993).
  77. Holman, R. A., Lalejini, D. M., Edwards, K. & Veeramony, J. A parametric model for barred equilibrium beach profiles. Coast. Eng. 90, 85-94 (2014).
  78. Coco, G. & Murray, A. B. Patterns in the sand: from forcing templates to self-organization. Geomorphology 91, 271-290 (2007).
  79. Vousdoukas, M. I. Erosion/accretion and multiple beach cusp systems on a meso-tidal, steeply-sloping beach. Geomorphology 141-142, 34-46 (2012).
  80. Wang, Z. & Dean, R. G. in Coastal Sediments '07 (eds Kraus, N. C. & Rosati, J. D.) 626-632 (American Society of Civil Engineers, 2007).
  81. Dai, Z.-J., Du, J.-z, Li, C.-C. & Chen, Z.-S. The configuration of equilibrium beach profile in South China. Geomorphology 86, 441-454 (2007).
  82. Romanczyk, W., Boczar-Karakiewicz, B. & Bona, J. L. Extended equilibrium beach profiles. Coast. Eng. 52, 727-744 (2005).
  83. Anderson, T. R., Fletcher, C. H., Barbee, M. M., Frazer, L. N. & Romine, B. M. Doubling of coastal erosion under rising sea level by mid-century in Hawaii. Nat. Hazards 78, 75-103 (2015).
  84. Bray, M. & Hooke, J. Prediction of soft-cliff retreat with accelerating sea-level rise. J. Coast. Res. 13, 453-467 (1997).
  85. Pilkey, O. H. & Cooper, J. A. G. Society and sea level rise. Science 303, 1781 (2004).
  86. Splinter, K. D., Carley, J. T., Golshani, A. & Tomlinson, R. A relationship to describe the cumulative impact of storm clusters on beach erosion. Coast. Eng. 83, 49-55 (2014).
  87. Vousdoukas, M. I., Ferreira, O., Almeida, L. P. & Pacheco, A. Toward reliable storm-hazard forecasts: XBeach calibration and its potential application in an operational early-warning system. Ocean Dyn. 62, 1001-1015 (2012).
  88. Roelvink, D. et al. Modelling storm impacts on beaches, dunes and barrier islands. Coast. Eng. 56, 1133-1152 (2009).
  89. Broekema, Y. B. et al. Observations and modelling of nearshore sediment sorting processes along a barred beach profile. Coast. Eng. 118, 50-62 (2016).
  90. de Winter, R. C. & Ruessink, B. G. Sensitivity analysis of climate change impacts on dune erosion: case study for the Dutch Holland coast. Clim. Change 141, 685-701 (2017).
  91. Karunarathna, H., Brown, J., Chatzirodou, A., Dissanayake, P. & Wisse, P. Multi-timescale morphological modelling of a dune-fronted sandy beach. Coast. Eng. 136, 161-171 (2018).
  92. Passeri, D. L., Bilskie, M. V., Plant, N. G., Long, J. W. & Hagen, S. C. Dynamic modeling of barrier island response to hurricane storm surge under future sea level rise. Clim. Change 149, 413-425 (2018).
  93. Vousdoukas, M. I. et al. Proc. 11th International Coastal Symposium (Coastal Education & Research Foundation, Inc., 2011).
  94. Callaghan, D. P., Nielsen, P., Short, A. D. & Ranasinghe, R. Statistical simulation of wave climate and extreme beach erosion. Coast. Eng. 55, 375-390 (2008).
  95. Ferreira, Ó., Garcia, T., Matias, A., Taborda, R. & Dias, J. A. An integrated method for the determination of set-back lines for coastal erosion hazards on sandy shores. Continent. Shelf Res. 26, 1030-1044 (2006).
  96. Mull, J. & Ruggiero, P. Estimating storm-induced dune erosion and overtopping along U.S. West Coast beaches. J. Coast. Res. 30, 1173-1187 (2014).
  97. Ferreira, Ó. Storm groups versus extreme single storms: predicted erosion and management consequences. J. Coast. Res. 42, 155-161 (2005).
  98. Dissanayake, P., Brown, J. & Karunarathna, H. Impacts of storm chronology on the morphological changes of the formby beach and dune system, UK. Nat. Hazards Earth Syst. Sci. 3, 2565-2597 (2015).
  99. Hackney, C., Darby, S. E. & Leyland, J. Modelling the response of soft cliffs to climate change: a statistical, process-response model using accumulated excess energy. Geomorphology 187, 108-121 (2013).
  100. Yates, M. L., Guza, R. T. & O'Reilly, W. C. Equilibrium shoreline response: observations and modeling. J. Geophys. Res. 114, C09014 (2009).
  101. Pontee, N. Defining coastal squeeze: a discussion. Ocean Coast. Manag. 84, 204-207 (2013).
  102. Doody, J. P. Coastal squeeze and managed realignment in southeast England, does it tell us anything about the future? Ocean Coast. Manag. 79, 34-41 (2013).
  103. Monioudi, I. N. et al. Assessment of island beach erosion due to sea level rise: the case of the Aegean archipelago (Eastern Mediterranean). Nat. Hazards Earth Syst. Sci. 17, 449-466 (2017).
  104. Rosen, T. & Xu, Y. J. Recent decadal growth of the Atchafalaya river delta complex: effects of variable riverine sediment input and vegetation succession. Geomorphology 194, 108-120 (2013).
  105. Peduzzi, P. et al. Global trends in tropical cyclone risk. Nat. Clim. Change 2, 289-294 (2012).
  106. Travis, J. Scientists fears come true as hurricane floods New Orleans. Science 309, 1656 (2005).
  107. Monteiro, M. C., Pereira, L. C. C. & de Oliveira, S. M. O. Morphodynamic changes of a macrotidal sand beach in the Brazilian Amazon Coast (Ajuruteua-Pará). J. Coast. Res. SI56, 103-107 (2009).
  108. Salomon, J.-N. L'accrétion littorale sur la côte Ouest de Madagascar. Physio-Géo 3, 35-59 (2009).
  109. Taft, L. & Evers, M. A review of current and possible future human- water dynamics in myanmar's river basins. Hydrol. Earth Syst. Sci. 20, 4913-4928 (2016).
  110. Marfai, M. A. & King, L. Monitoring land subsidence in Semarang, Indonesia. Environ. Geol. 53, 651-659 (2007).
  111. Rodolfo, K. S. & Siringan, F. P. Global sea-level rise is recognised, but flooding from anthropogenic land subsidence is ignored around northern Manila Bay, Philippines. Disasters 30, 118-139 (2006).
  112. Extended Data Fig. 2 | Projected long-term shoreline change due to SLR-driven retreat (R) alone, by the year 2050 and 2100 under RCP4.5 and RCP8.5. Projected long-term shoreline change due to SLR-driven retreat (R) alone, by the year 2050 (a,c) and 2100 (b,d) under RCP4.5 (a-b) and RCP8.5 (c-d). Values represent the median change and positive/negative values express accretion/erosion in m, relative to 2010. The global average median change is shown in the inset text for each case, along with the 5 th -95 th percentile range.
  113. Extended Data Fig. 3 | Projected long-term shoreline change driven due to the ambient shoreline change rate (AC) alone, by the year 2050 and 2100. Projected long-term shoreline change driven due to the ambient shoreline change rate (AC) alone, by the year 2050 (a) and 2100 (b). Values represent the median change and positive/negative values express accretion/erosion in m, relative to 2010. The global average median change is shown in the inset text for each case, along with the 5 th -95 th percentile range.
  114. Extended Data Fig. 9 | Length of sandy beach shoreline that is projected to retreat by more than 50, 100 and 200 m per IPCC SReX sub-region. Bar plots showing, per IPCC SREX sub-region, the length (in km) of sandy beach shoreline that is projected to retreat by more than 50 (blue), 100 (yellow) and 200 m (red), by 2050 (a,c) and 2100 (b,d), under RCP4.5 (a-b) and RCP8.5 (c-d) relative to 2010. Transparent colour patches indicate the 5 th -95 th quantile range and solid rectangles show the median value. For the region abbreviations, please see Supplementary Figs. 2 and 5. NATuRe CLIMATe ChANge | www.nature.com/natureclimatechange