Academia.eduAcademia.edu

Outline

Finite element analysis of model piles axially loaded in sands

2008

Abstract

When considering the interaction of two media in contact with highly-distinct deformability characteristics failure is often accompanied by the formation within the more deformable medium of a rather thin zone oriented in the direction of the contact surface. This zone, called the soil-structure interface, or simply interface, experiences intense strain localization and plays the role of a kinematic discontinuity characterized by extremely high strain gradients. Quite a large number of civil engineering structures lie in contact with soils. Such is the case, for example, in soil-retaining walls, soil-anchorage rods, soil-piles or micropiles, or soil-reinforcements (e.g. “terre armee”, nailed soils). Failure in these structures occurs mainly due to progressive shearing and is often observed at the interface, in the softer medium (i.e. the soil mass), where stresses and strains are transmitted. The description of the mechanical behaviour, mainly in terms of mobilized friction between ...

FAQs

sparkles

AI

What key observations were made about the soil-pile interface during loading tests?add

The study reveals that mobilized friction at the soil-pile interface increases progressively until failure, peaking at μ_p and showing residual value μ_r thereafter.

How does the MEPI-2D model improve predictions of pile behavior?add

The MEPI-2D model accounts for the elastoplastic behavior of the interface, significantly enhancing the accuracy of predicted shear stress mobilization along pile shafts during loading.

What distinguishes the modelling of driven versus bored piles in FEM analysis?add

Driving a pile remolds the surrounding soil, necessitating a different approach than boring, which requires careful assessment of residual stresses and installation effects.

How was installation effect simulated in the finite element model?add

An empirical relation was used to initialize effective stresses in the surrounding soil, reflecting changes in radial stress, shaft friction, and base resistance.

What role does the aspect ratio of thin-layer elements play in modelling accuracy?add

Appropriate aspect ratios (L/t = 25) for thin-layer elements were found crucial to reproduce interface behavior accurately and avoid numerical instability.

References (48)

  1. ALAWNEH A.S., MALKAWI A.I.H. (2000) -Estimation of post-driving residual stresses along driven piles in sand. Geotechnical Testing Journal, vol. XXIII, n. 3, pp. 313-326.
  2. BRANSBY M.F., SPRINGMAN S.M. (1996) -3D finite ele- ment modelling of piles groups adjacent to surcharge loads. Computers and Geotechnics, 19, pp. 301- 324.
  3. BOND A.J. (1989) -Behaviour of diplacment piles in overconsolidated clays. PhD Thesis, Imperial Col- lege, London.
  4. BOULON M., NOVA R. (1990) -Modelling of soil-struc- ture interface behaviour, a comparison between elasto- plastic and rate type laws. Computers and Geotech- nics, 9, pp. 21-46.
  5. BUSTAMANTE M. (1982) -The pile loading test. Founda- tion Engineering, vol. I, G. Pilot (Ed.), Presse de l'école Nationale des Ponts et Chaussées, pp. 263-273.
  6. CHOW F.C. (1997) -Investigations in the behaviour of displacement piles for offshore foundations. PhD The- sis, Imperial College, London.
  7. COMODROMOS E.M., ANAGNOSTOPOULOS C.T., GEOR- GIADIS M.K. (2003) -Numerical assessment of axial group response based on load test. Computers and Geotechnics, 30, pp. 505-515.
  8. CUBRINOVSKI M., ISHIHARA K. (1998) -Modelling of sand behaviour based on state concept. Soils and Foundations, 38, 3, pp. 115-127.
  9. DAY R.A., POTTS D.M. (1994) -Zero thickness interface elements. Numerical stability and application. Int. Journ. Num. Anal. Meth. Geomech., 18, pp. 689- 708.
  10. DE GENNARO V. (1999) -Etude du comportement méca- nique des interfaces sol-structure. Application à l'analyse du comportement des pieux. PhD Thesis, Ecole Na- tionale des Ponts et Chaussées, Paris, France, pp.
  11. DE GENNARO V., PANDE G.N., LERAT P. (2002) -Stability problems in soil-structure interfaces: experimental obser- vations and numerical study. International Journal of Geomechanics, vol. II, n. 2, pp. 175-203.
  12. DE GENNARO V,.
  13. FRANK F. (2002) -Elasto-plastic anal- ysis of the interface behaviour between granular media and structure. Computers and Geotechnics, 29, pp. 547-572.
  14. DE GENNARO V., FRANK F. (2003) -Elastoplastic model- ling of the behaviour of the granular soil-structure in- terface. In Novel approaches in civil engineering, Frémond and Maceri (Eds.), Springer Verlag, pp. 133-158.
  15. DE GENNARO V., SAID I., FRANK R. & MESTAT P.H. (2004) -Numerical simulations of installation effects on embedded model piles in calibration chamber. Proc. 9th Int. Symp. on Num. Models in Geom. (NU- MOG IX), Ottawa (Canada), pp. 197-203.
  16. DE GENNARO V., FRANK R. (2005) -Modélisation de l'interaction sol-pieu par la méthode des éléments finis. Bull. de Liaison des Laboratoire des Ponts et Chaussées, pp. 256-257, pp. 107-133.
  17. DESAI C.S., ZAMAN M.M., LIGHTNER J.G., SIRIRWAR- DANE H.J. (1984) -Thin-layer element for interfaces and joints. Int. J. Numer. Anal. Methods Geo- mech. 8, pp. 19-43.
  18. DIETZ M.S., LINGS M.L. (2006) -Post peak Strength of Interfaces in a Stress-Dilatancy Framework. Journal of Geotechnical and Geoenvironmental Engi- neering, ASCE, vol. cXXXII, n. 11.
  19. DUPLA J.C., CANOU J. (1994) -Caractérisation méca- nique du sable de Fontainbleau à partir d'essais triaxi- aux de compression et d'extension. Rapport de Syn- these Projet National Clouterre II, CERMES/ ENPC, Paris, France.
  20. FRANK R., GUENOT A., HUMBERT P. (1982) -Numerical analysis of contacts in geomechnics. Proc. 4th Int. Conf. on Num. Meth. in Geomechanics, Edmon- ton, May 31-June 4, pp. 37-45.
  21. FRANK R., BAUDUIN C., DRISCOLL R., KAVVADAS M., KREBS OVESEN N., ORR T., SCHUPPENER B. (2004) - Designer's guide to EN 1997-1 Eurocode 7: Geotech- nical design -General rules. Thomas Telford, Lon- don, 216 pp.
  22. GHIONNA V.N., MORTARA G. (2002) -An elastoplastic model for sand-structure interface behaviour. Géo- technique, 52, n. 1, pp. 41-50.
  23. GOODMAN R.E., TAYLOR R.L., BREKKE T.L. (1968) -A model for the mechanics of jointed rocks. J. of Soils Mech. and Found. Div., ASCE, 94, (SM3), pp. 637-659.
  24. HOHBERG J-M., SCHWEIGER H. (1992) -On the penalty behaviour of thin-layer elements. Proc. 4th Int. Symp. on Num. Models in Geom. (NUMOG IV), Swansea, UK, pp. 241-248.
  25. HUMBERT P. (1989) -CESAR-LCPC, un code général de calcul par éléments finis. Bull. Liaison Labo. Ponts et Chaussées, 160, févr-mars, pp. 112-116.
  26. JARDINE R.J., OVERY R.F., CHOW F.C. (1998) -Axial capacity of offshore piles in dense marine sand. Journal of Geotech. and Geoenvir. Engrg., ASCE, 124 (2), pp. 171-178.
  27. JARDINE R., CHOW F.C., OVERY R., STANDING J. (2005) -ICP design methods for driven piles in sands and clays. Thomas Telford, pp. 112.
  28. KATONA M.G., (1983) -A simple contact-friction inter- face element with application to buried culverts. Int. Journ. Num. Anal. Geomech., 7, pp. 371-384.
  29. RIVISTA ITALIANA DI GEOTECNICA
  30. KUWANO R. (1996) -Laboratory tests on Dunkirk sand. Imperial College Internal Report.
  31. LI X.S., DAFALIAS Y.F. (2000) -Dilatancy for cohesion- less soils. Gétechnique, 50, n. 4, pp. 449-460.
  32. LINGS M.L., DIETZ M.S. (2004) -An improved direct shear apparatus for sand. Géotechnique, 54, n. 4, pp. 245-256.
  33. MABSOUT M.E., REESE L.C. TASSOULAS L. (1995) - Study of pile driving by finite element method. Journal of Geotechnical Engineering, ASCE, 121, 7, pp. 535-543.
  34. MAQTADIR A., DESAI C.S. (1986) -Three-dimensional analysis of a pile-group foundation. Int. J. Numer. Anal. Methods Geomech. 10, pp. 41-58.
  35. MAYNE P.M., KULHAWY F.H. (1982) -K o -OCR relation- ships in soils. Journal of Geotechnical Engineering. ASCE, 108 (GT6), pp. 851-872.
  36. MOHAMEDZEIN Y.E.A., MOHAMED M.G., EL SHARIEF A.M. (1999) -Finite element analysis of short piles in expansive soils. Computers and Geotechnics, 24, pp. 231-243.
  37. MUIR WOOD D., BELKHEIR K., LIU D.F. (1994) -Strain softening and state parameter for sand modelling. Géotechnique, 44, n. 2, pp. 335-339.
  38. NOVA R. (1977) -On the hardening of soils. Arch. Mech. Stosow, 29, (3), pp. 435-458.
  39. NOVA R. (1982) -A model of soil behaviour in plastic and hysteric ranges. Part I: Monotonic loading. Results of the International Workshop on Constitutive Re- lations for Soils, Grenoble, 6-8 September, pp. 289-309.
  40. PANDE G.N., SHARMA K.G. (1979) -On joint/interface elements and associated problems of numerical ill-con- ditioning. Int. J. Numer. Anal. Methods Geo- mech., 3, pp. 293-300.
  41. POTTS D.M., ZDRAVKOVIC L. (2001) -Finite element analysis in geotechnical engineering. Thomas Tel- ford, London.
  42. SAID I. (2006) -Comportement des interfaces et modélisa- tion des pieux sous charge axiale. PhD Thesis, Ecole Nationale des Ponts et Chaussées, Paris, France.
  43. SCHANZ T., VERMEER P.A. (1996) -Angles of friction and dilatancy of sand. Géotechnique, 46, n. 1, pp. 145- 151.
  44. SHENG D., WRIGGERS P., SLOAN S.W. (2007) -Applica- tion of frictional contactin geotechnical engineering. International Journal of Geomechanics, vol. VII, n. 3, pp. 176-185.
  45. SCHOFIELD A.N., WROTH P. (1968) -Critical state soil mechanics. McGraw-Hill, European Civil Engi- neering series, London.
  46. VAID Y.P., SASITHARAN S. (1992) -The strength and di- latancy of sand. Can. Geotech. J., 29, pp. 522-526.
  47. WAKAI A., GOSE S., UGAI K. (1999) -3-D elasto-plastic finite element analyses of pile foundations subjected to lateral loading. Soils and Foundations 39, (1), pp. 97-111.
  48. WEHNERT M., VERMEER P.A. (2004) -Numerical analy- ses of load tests on bored piles. Proc. Num. Models in Geomechanics, (NUMOG IX), pp. 505-511.