Academia.eduAcademia.edu

Outline

String correlators in AdS3 from FZZ duality

Journal of High Energy Physics

https://doi.org/10.1007/JHEP12(2021)012

Abstract

Motivated by recent works in which the FZZ duality plays an important role, we revisit the computation of correlation functions in the sine-Liouville field theory. We present a direct computation of the three-point function, the simplest to the best of our knowledge, and give expressions for the N-point functions in terms of integrated Liouville theory correlators. This leads us to discuss the relation to the $$ {H}_3^{+} $$ H 3 + WZW-Liouville correspondence, especially in the case in which spectral flow is taken into account. We explain how these results can be used to study scattering amplitudes of winding string states in AdS3.

References (62)

  1. S. Elitzur, A. Forge and E. Rabinovici, Some global aspects of string compactifications, Nucl. Phys. B 359 (1991) 581 [INSPIRE].
  2. G. Mandal, A.M. Sengupta and S.R. Wadia, Classical solutions of two-dimensional string theory, Mod. Phys. Lett. A 6 (1991) 1685 [INSPIRE].
  3. E. Witten, On string theory and black holes, Phys. Rev. D 44 (1991) 314 [INSPIRE].
  4. R. Dijkgraaf, H.L. Verlinde and E.P. Verlinde, String propagation in a black hole geometry, Nucl. Phys. B 371 (1992) 269 [INSPIRE].
  5. K. Becker and M. Becker, Interactions in the SL(2, R)/U(1) black hole background, Nucl. Phys. B 418 (1994) 206 [hep-th/9310046] [INSPIRE].
  6. N. Seiberg, Emergent spacetime, hep-th/0601234 [INSPIRE].
  7. K. Hori and A. Kapustin, Duality of the fermionic 2D black hole and N = 2 Liouville theory as mirror symmetry, JHEP 08 (2001) 045 [hep-th/0104202] [INSPIRE].
  8. JHEP12(2021)012
  9. V. Kazakov, I.K. Kostov and D. Kutasov, A matrix model for the two-dimensional black hole, Nucl. Phys. B 622 (2002) 141 [hep-th/0101011] [INSPIRE].
  10. A. Giveon, N. Itzhaki and D. Kutasov, Stringy horizons, JHEP 06 (2015) 064 [arXiv:1502.03633] [INSPIRE].
  11. A. Giveon and D. Kutasov, Notes on AdS 3 , Nucl. Phys. B 621 (2002) 303 [hep-th/0106004] [INSPIRE].
  12. Y. Nakayama, S.-J. Rey and Y. Sugawara, The nothing at the beginning of the universe made precise, hep-th/0606127 [INSPIRE].
  13. Y. Hikida and T. Takayanagi, On solvable time-dependent model and rolling closed string tachyon, Phys. Rev. D 70 (2004) 126013 [hep-th/0408124] [INSPIRE].
  14. Y. Hikida and V. Schomerus, The FZZ-duality conjecture: a proof, JHEP 03 (2009) 095 [arXiv:0805.3931] [INSPIRE].
  15. A.V. Stoyanovsky, A relation between the Knizhnik-Zamolodchikov and Belavin-Polyakov-Zamolodchikov systems of partial differential equations, math-ph/0012013 [INSPIRE].
  16. S. Ribault and J. Teschner, H + (3)-WZNW correlators from Liouville theory, JHEP 06 (2005) 014 [hep-th/0502048] [INSPIRE].
  17. Y. Hikida and V. Schomerus, H + (3) WZNW model from Liouville field theory, JHEP 10 (2007) 064 [arXiv:0706.1030] [INSPIRE].
  18. G. Giribet, The String theory on AdS 3 as a marginal deformation of a linear dilaton background, Nucl. Phys. B 737 (2006) 209 [hep-th/0511252] [INSPIRE].
  19. J.M. Maldacena, Long strings in two dimensional string theory and non-singlets in the matrix model, JHEP 09 (2005) 078 [hep-th/0503112] [INSPIRE].
  20. A. Giveon, N. Itzhaki and D. Kutasov, Stringy horizons II, JHEP 10 (2016) 157 [arXiv:1603.05822] [INSPIRE].
  21. G. Giribet, Stringy horizons and generalized FZZ duality in perturbation theory, JHEP 02 (2017) 069 [arXiv:1611.03945] [INSPIRE].
  22. D.L. Jafferis and E. Schneider, Stringy ER=EPR, arXiv:2104.07233 [INSPIRE].
  23. Y. Chen and J. Maldacena, String scale black holes at large D, arXiv:2106.02169 [INSPIRE].
  24. T. Fukuda and K. Hosomichi, Three point functions in sine-Liouville theory, JHEP 09 (2001) 003 [hep-th/0105217] [INSPIRE].
  25. S. Ribault, Knizhnik-Zamolodchikov equations and spectral flow in AdS 3 string theory, JHEP 09 (2005) 045 [hep-th/0507114] [INSPIRE].
  26. A. Giveon and N. Itzhaki, Stringy black hole interiors, JHEP 11 (2019) 014 [arXiv:1908.05000] [INSPIRE].
  27. G. Giribet and C.A. Núñez, Correlators in AdS 3 string theory, JHEP 06 (2001) 010 [hep-th/0105200] [INSPIRE].
  28. J.M. Maldacena and H. Ooguri, Strings in AdS 3 and the SL(2, R) WZW model. Part 3. Correlation functions, Phys. Rev. D 65 (2002) 106006 [hep-th/0111180] [INSPIRE].
  29. JHEP12(2021)012
  30. G. Giribet, On spectral flow symmetry and Knizhnik-Zamolodchikov equation, Phys. Lett. B 628 (2005) 148 [hep-th/0508019] [INSPIRE].
  31. G. Giribet, Violating the string winding number maximally in Anti-de Sitter space, Phys. Rev. D 84 (2011) 024045 [Addendum ibid. 96 (2017) 024024] [arXiv:1106.4191] [INSPIRE].
  32. P. Di Francesco and D. Kutasov, World sheet and space-time physics in two-dimensional (Super)string theory, Nucl. Phys. B 375 (1992) 119 [hep-th/9109005] [INSPIRE].
  33. M. Goulian and M. Li, Correlation functions in Liouville theory, Phys. Rev. Lett. 66 (1991) 2051 [INSPIRE].
  34. J.M. Maldacena and H. Ooguri, Strings in AdS 3 and SL(2, R) WZW model 1. The spectrum, J. Math. Phys. 42 (2001) 2929 [hep-th/0001053] [INSPIRE].
  35. J.M. Maldacena, H. Ooguri and J. Son, Strings in AdS 3 and the SL(2, R) WZW model. Part 2. Euclidean black hole, J. Math. Phys. 42 (2001) 2961 [hep-th/0005183] [INSPIRE].
  36. M.R. Gaberdiel, R. Gopakumar and C. Hull, Stringy AdS 3 from the worldsheet, JHEP 07 (2017) 090 [arXiv:1704.08665] [INSPIRE].
  37. L. Eberhardt, M.R. Gaberdiel and W. Li, A holographic dual for string theory on AdS 3 × S 3 × S 3 × S 1 , JHEP 08 (2017) 111 [arXiv:1707.02705] [INSPIRE].
  38. S. Datta, L. Eberhardt and M.R. Gaberdiel, Stringy N = (2, 2) holography for AdS 3 , JHEP 01 (2018) 146 [arXiv:1709.06393] [INSPIRE].
  39. M.R. Gaberdiel and R. Gopakumar, Tensionless string spectra on AdS 3 , JHEP 05 (2018) 085 [arXiv:1803.04423] [INSPIRE].
  40. L. Eberhardt, M.R. Gaberdiel and R. Gopakumar, The worldsheet dual of the symmetric product CFT, JHEP 04 (2019) 103 [arXiv:1812.01007] [INSPIRE].
  41. L. Eberhardt and M.R. Gaberdiel, String theory on AdS 3 and the symmetric orbifold of Liouville theory, Nucl. Phys. B 948 (2019) 114774 [arXiv:1903.00421] [INSPIRE].
  42. L. Eberhardt and M.R. Gaberdiel, Strings on AdS 3 × S 3 × S 3 × S 1 , JHEP 06 (2019) 035 [arXiv:1904.01585] [INSPIRE].
  43. A. Dei, L. Eberhardt and M.R. Gaberdiel, Three-point functions in AdS 3 /CFT 2 holography, JHEP 12 (2019) 012 [arXiv:1907.13144] [INSPIRE].
  44. L. Eberhardt, M.R. Gaberdiel and R. Gopakumar, Deriving the AdS 3 /CFT 2 correspondence, JHEP 02 (2020) 136 [arXiv:1911.00378] [INSPIRE].
  45. A. Dei, M.R. Gaberdiel, R. Gopakumar and B. Knighton, Free field world-sheet correlators for AdS 3 , JHEP 02 (2021) 081 [arXiv:2009.11306] [INSPIRE].
  46. L. Eberhardt, AdS 3 /CFT 2 at higher genus, JHEP 05 (2020) 150 [arXiv:2002.11729] [INSPIRE].
  47. G. Giribet, C. Hull, M. Kleban, M. Porrati and E. Rabinovici, Superstrings on AdS 3 at = 1, JHEP 08 (2018) 204 [arXiv:1803.04420] [INSPIRE].
  48. B. Balthazar, A. Giveon, D. Kutasov and E.J. Martinec, Asymptotically Free AdS 3 /CFT 2 , arXiv:2109.00065 [INSPIRE].
  49. A. Dei and L. Eberhardt, String correlators on AdS 3 : three-point functions, JHEP 08 (2021) 025 [arXiv:2105.12130] [INSPIRE].
  50. JHEP12(2021)012
  51. A. Dei and L. Eberhardt, String correlators on AdS 3 : four-point functions, arXiv:2107.01481 [INSPIRE].
  52. G. Giribet and C.A. Núñez, Aspects of the free field description of string theory on AdS 3 , JHEP 06 (2000) 033 [hep-th/0006070] [INSPIRE].
  53. V.S. Dotsenko and V.A. Fateev, Four point correlation functions and the operator algebra in the two-dimensional conformal invariant theories with the central charge c < 1, Nucl. Phys. B 251 (1985) 691 [INSPIRE].
  54. A.B. Zamolodchikov and A.B. Zamolodchikov, Structure constants and conformal bootstrap in Liouville field theory, Nucl. Phys. B 477 (1996) 577 [hep-th/9506136] [INSPIRE].
  55. H. Dorn and H.J. Otto, Two and three point functions in Liouville theory, Nucl. Phys. B 429 (1994) 375 [hep-th/9403141] [INSPIRE].
  56. G. Giribet, On the timelike Liouville three-point function, Phys. Rev. D 85 (2012) 086009 [arXiv:1110.6118] [INSPIRE].
  57. D. Harlow, J. Maltz and E. Witten, Analytic continuation of Liouville theory, JHEP 12 (2011) 071 [arXiv:1108.4417] [INSPIRE].
  58. V. Schomerus, Rolling tachyons from Liouville theory, JHEP 11 (2003) 043 [hep-th/0306026] [INSPIRE].
  59. P. Baseilhac and V.A. Fateev, Expectation values of local fields for a two-parameter family of integrable models and related perturbed conformal field theories, Nucl. Phys. B 532 (1998) 567 [hep-th/9906010] [INSPIRE].
  60. V.A. Fateev and A.V. Litvinov, Coulomb integrals in Liouville theory and Liouville gravity, JETP Lett. 84 (2007) 531 [INSPIRE].
  61. V.A. Fateev and A.V. Litvinov, Multipoint correlation functions in Liouville field theory and minimal Liouville gravity, Theor. Math. Phys. 154 (2008) 454 [arXiv:0707.1664] [INSPIRE].
  62. V. Fateev, Relation between sine-Liouville and Liouville, unpublished work.