Academia.eduAcademia.edu

Outline

A Family of Tetravalent Half-transitive Graphs

2020

Abstract

In this paper, we introduce a new family of graphs, $\Gamma(n,a)$. We show that it is an infinite family of tetravalent half-transitive Cayley graphs. Apart from that, we determine some structural properties of $\Gamma(n,a)$.

References (21)

  1. B. Alspach, D. Marusic and L. Nowitz: Constructing graphs which are 1/2-transitive, Journal of the Australian Mathematical Society, 56(3), pp. 391-402, 1994.
  2. I. Z. Bouwer: Vertex and edge-transitive but not 1-transitive graphs, Canad. Math. Bull. 13, (1970), 231-237.
  3. J.Chen, C.H. Li and Ákos Seress: A family of half-transitive graphs, Electronic Journal of Combinatorics, 20(1), P56, 2013.
  4. H. Cheng and L. Cui: Tetravalent half-arc-transitive graphs of order p 5 , Applied Math- ematics and Computation, 332: 506-518, 2018.
  5. Y.Q. Feng, J.H. Kwak, X. Wang and J.X. Zhou: Tetravalent half-arc-transitive graphs of order 2pq, Journal of Algebraic Combinatorics, 33: 543-553, 2011.
  6. Y.Q. Feng, J.H. Kwak, M.Y. Xu and J.X. Zhou: Tetravalent half-arc-transitive graphs of order p 4 , European Journal of Combinatorics 29(3): 555-567, 2008.
  7. Y.Q. Feng, K. Wang and C. Zhou: Tetravalent half-arc-transitive graphs of order 4p, European Journal of Combinatorics, 28: 726-733, 2007.
  8. C. Godsil and G.F. Royle: Algebraic Graph Theory, Graduate Texts in Mathematics, 207, Springer-Verlag, 2001.
  9. D.F. Holt: A Graph Which Is Edge Transitive But Not Arc Transitive, Journal of Graph Thery, 5, 201-204, 1981.
  10. D. Marusic: Hamiltonian Circuits in Cayley Graphs, Discrete Mathematics, 46: 49-54, 1983.
  11. W. Stein and others: Sage Mathematics Software (Version 7.3), Release Date: 04.08.2016, http://www.sagemath.org.
  12. W.T. Tutte: Connectivity in Graphs, Univ. of Toronto Press, Toronto, 1966.
  13. C. Zhou and Y.Q. Feng: An infinite family of tetravalent half-arc-transitive graphs, Discrete Mathematics, 306: 2205-2211, 2006. Appendix: Sage Code for Γ(n, a) for n = 7, a = 2 n=7 a=2 b=mod(a^2,n) A=list(var('A_%d' % i) for i in range(n))
  14. B=list(var('B_%d' % i) for i in range(
  15. C = cartesian_product([A, B])
  16. V=C.list()
  17. E=[] Gamma=Graph() Gamma.add_vertices(V) for i in range(n): for j in range(3): E.append(((A[i],B[j]),(A[mod(a*i+1,n)],B[mod(j-1,
  18. E.append(((A[i],B[j]),(A[mod(a*i-1,n)],B[mod(j-1,
  19. E.append(((A[i],B[j]),(A[mod(b*i+b,n)],B[mod(j+1,
  20. E.append(((A[i],B[j]),(A[mod(b*i-b,n)],B[mod(j+1,
  21. Gamma.add_edges(E) G=Gamma.automorphism_group() for f in G: if f((A[0],B[0]))==(A[0],B[0]) and f((A[b],B[1]))==(A[1],B[2]) and f((A[1],B[2]))==(A[n-1],B[2]): print "sucess"