Three Series for the Generalized Golden Mean
2014, arXiv: Number Theory
Abstract
As is well-known, the ratio of adjacent Fibonacci numbers tends to � = (1+ √ 5)/2, and the ratio of adjacent Tribonacci numbers (where each term is the sum of the three �
References (12)
- G. P. Dresden. A simplified Binet formula for k-generalized Fibonacci numbers. Preprint, November 27 2011. Available at http://arxiv.org/abs/0905.0304.
- F. Dubeau. On r-generalized Fibonacci numbers. Fibonacci Quart. 27 (1989), 221-229.
- M. Feinberg. Fibonacci-Tribonacci. Fibonacci Quart. 1 (3) (1963), 71-74.
- P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, 2009.
- M. Forsyth, A. Jayakumar, and J. Shallit. Remarks on privileged words. Preprint, November 28 2013. Available at http://arxiv.org/abs/1311.7403.
- P. Y. Lin. De Moivre-type identities for the Tetrabonacci numbers. In Applications of Fibonacci Numbers, Vol. 4, Kluwer, 1991, pp. 215-218.
- E. P. Miles, Jr. Generalized Fibonacci numbers and associated matrices. Amer. Math. Monthly 67 (1960), 745-752.
- M. D. Miller. On generalized Fibonacci numbers. Amer. Math. Monthly 78 (1971), 1108-1109.
- J. Sharp. Have you seen this number? Math. Gazette 82 (1998), 203-214.
- W. R. Spickerman. Binet's formula for the Tribonacci sequence. Fibonacci Quart. 20 (1982), 118-120.
- D. A. Wolfram. Solving generalized Fibonacci recurrences. Fibonacci Quart. 36 (1998), 129-145.
- X. Zhu and G. Grossman. Limits of zeros of polynomial sequences. J. Comput. Anal. Appl. 11 (2009), 140-158.