Academia.eduAcademia.edu

Outline

A Methodology for Defining Working Healthcare Ontologies

International Journal of Scientific and Technological Research

https://doi.org/10.7176/JSTR/5-4-15

Abstract

Retrieving the information needed for right clinical decision and searching through a large amount of data are important challenges that health information systems encountered despite the advances in the information systems. In order to reuse these distributed data, the health information standards are developed to enable interoperable health information systems. As the standards are far from the necessary semantics, the data defined according to these standards are not been efficiently used by machines. Semantic Web technologies provide a common framework to access and process the information by machines with the support of ontologies. The heterogeneous and distributed nature of health data makes it a very suitable candidate to define health domain specific ontologies. In this work, a methodology for defining health ontologies, which should work as information base of a health information system as the next stage, is proposed to ensure interoperability and reuse between health information systems with the support of health information standards. Clinical Biochemistry Laboratory Ontology (CBLO) is given as a use case to model information of laboratory tests realized in clinical biochemistry laboratory that are a sub-domain of medical laboratory tests. In addition, a weighted evaluation for the proposed methodology is presented.

References (37)

  1. Azarm, M. & Peyton, L. (2018). An Ontology for a Patient-Centric Healthcare Interoperability Framework. 2018 IEEE/ACM International Workshop on Software Engineering in Healthcare Systems (SEHS), Gothenburg, 2018, pp. 34-41. doi: 10.1145/3194696.3194706.
  2. Berners-Lee, T., Hendler, J. & Lassila, O. (2001). The Semantic Web, Scientific American, 29-37.
  3. Burgun, A., Botti, G., Fieschi, M. & Le Beux, P. (1999). Sharing knowledge in medicine: semantic and ontologic facets of medical concepts. In Systems, Man, and Cybernetics, 1999. IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on (Vol. 6, pp. 300-305). IEEE. doi: 10.1109/ICSMC.1999.816568.
  4. Ceusters, W., Smith, B. & De Moor, G. (2005). Ontology-based integration of medical coding systems and electronic patient records. MIE2005. doi:10.1.1.472.1489.
  5. Corcho, O., Fernández-López, M. & Gómez-Pérez, A. (2003). Methodologies, tools and languages for building ontologies. Where is their meeting point? Data & knowledge engineering, 46(1), 41- 64. doi: 10.1016/S0169-023X(02)00195-7.
  6. Cristani, M. & Cuel, R. (2005). A survey on ontology creation methodologies. International Journal on Semantic Web and Information Systems (IJSWIS), 1(2), 49-69. doi: 10.4018/978-1-59904-426- 2.ch004. Del Mar Roldán-Garcia, M., Garcia-Godoy, M. J., Aldana-Montes, J. F. (2016). Dione: An OWL representation of ICD-10-CM for classifying patients' diseases. Journal of Biomedical Semantics, 7(1), 62. doi:10.1186/s13326-016-0105-x.
  7. Dorn, R. & Jager, F. (2004). Semia: semi-automatic interactive graphic editing tool to annotate ambulatory ECG records. Computer methods and programs in biomedicine, 75 (3): 235-249. doi: 10.1016/j.cmpb.2004.02.005
  8. Edinger, T., Cohen, A. M., Bedrick, S., Ambert, K. & Hersh, W. (2012). Barriers to Retrieving Patient Information from Electronic Health Record Data: Failure Analysis from the TREC Medical Records Track, AMIA Annu Symp Proc.:180-188. [Online] https://www.ncbi.nlm.nih.gov/pubmed/23304287. Accessed:01 April 2019. www.iiste.org Erickson, S. M., Wolcott, J., Corrigan J. M., Aspden, P. (Eds.) (2003). Patient safety: achieving a new standard for care. Institute of Medicine Committee on Data Standards for Patient Safety. Washington, DC, USA: National Academies Press.
  9. FMA, Foundation Model of Anatomy, http://si.washington.edu/projects/fma, Accessed: 01 April 2019.
  10. Focsa, Mircea Adrian, (2016). An Architectural Approach for Building Medical Ontologies. Applied Medical Informatics, 38(2), p.66-72.
  11. Fung K.W. & Bodenreider O. (2019). Knowledge Representation and Ontologies. In: Richesson R., Andrews J. (eds) Clinical Research Informatics. Health Informatics. Springer, Cham. doi:10.1007/978-3-319-98779-8_15.
  12. Gesulga J. M., Berjame, A., Moquiala, K. S. & Galido, A. (2017). Barriers to Electronic Health Record System Implementation and Information Systems Resources: A Structured Review,Procedia Computer Science, 124, p.544-551, https://doi.org/10.1016/j.procs.2017.12.188.
  13. Gómez-Pérez, A., Fernandez-Lopez, M. & Corcho, O. (2004). Ontological Engineering: with examples from the areas of Knowledge Management, e-Commerce and the Semantic Web. (1 st ed.). Springer Publishing Company, Incorporated.
  14. Hakkarainen, S., Strasunskas, D., Hella, L., Tuxen, S. (2005). Weighted Evaluation of Ontology Building Methods. In CAiSE Short Paper Proceedings.
  15. ICD, The International Classification of Diseases, http://www.who.int/classifications/icd/en/, Accessed: 01 April 2019.
  16. ICD-10 PCS, International Classification of Diseases, Version 10 -Procedure Coding System, https://bioportal.bioontology.org/ontologies/ICD10PCS, Accessed: 01 April 2019.
  17. Kolias, V. D., Stoitsis, J., Golemati, S. & Nikita, K. S. (2014). Utilizing Semantic Web Technologies in Healthcare. Concepts and Trends in Healthcare Information Systems, Springer International Publishing, p. 9-19. doi: 10.1007/978-3-319-06844-2_2.
  18. Krogstie, John, (1995). Conceptual modeling for computerized information systems support in organizations. Norges Tekniske Høgskole, Institutt for Datateknikk of Telematikk. [Online] https://www.idi.ntnu.no/grupper/su/publ/phd/krogstie-thesis-electronic.pdf, Accessed: 01 April 2019.
  19. Kruse, C. S., Kristof, C., Jones, B., Mitchell, E. & Martinez, A. (2016). Barriers to Electronic Health Record Adoption: A Systematic Literature Review. Journal of medical systems, 40(12), 252. doi: 10.1016/j.procs.2017.12.188.
  20. Mejino, J. L., Rubin, D. L. & Brinkley, J. F. (2008) FMA-RadLex: An application ontology of radiological anatomy derived from the foundational model of anatomy reference ontology. Annual Symposium proceedings/AMIA Symposium. AMIA Symposium, pp. 465-469. [Online] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2656009/.
  21. Möller, M., Daniel. S. & Patrick, E. (2010). Modeling the international classification of diseases (ICD-10) in OWL. In International Joint Conference on Knowledge Discovery, Knowledge Engineering, and Knowledge Management, pp. 226-240. Springer Berlin Heidelberg. doi: 10.1007/978-3-642-29764-9_16.
  22. Nolan, N. B., Mejino, J. L. V., Detwiler, L. T., Nilsen, T. T., Martone, M. E., Turner, J. A., Rubin, D. L. & Brinkley, J. F. (2014). Neuroanatomical domain of the foundational model of anatomy ontology. Journal of biomedical semantics, 5:(1). doi:10.1186/2041-1480-5-1.
  23. Noy, N. F. & McGuinness, D. L. (2001). Ontology development 101: A guide to creating your first ontology, [Online] http://www.ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy- mcguinness.pdf, Accessed: 01 April 2019.
  24. Nyasulu, P. S., Paszko, C. & Mbelle, N. (2014). A narrative review of the laboratory information system and its role in antimicrobial resistance surveillance in south Africa. Advances in Microbiology, 2014 (4), p.692-696. doi:10.4236/aim.2014.410074.
  25. RadLex, Radiology Lexicon, http:// www.radlex.org/, Accessed: 01 April 2019.
  26. Rajbhandari, P., Gosai, R., Shah, R. C. & Kc, P. (2012). Semantic web in medical information systems. International Journal of Advances in Engineering and Technology, 5: 536-543. [Online] http://www.e-ijaet.org/media/53I11-IJAET1111227-MEDICAL-INFORMATION.pdf.
  27. Schulz, S., Hanser, S., Hahn, U. & Rogers, J. (2006). The Semantics of Procedures and Diseases in SNOMED® CT. Methods of information in medicine, 45(4), 354-358. doi: 10.1055/s-0038- 1634088.
  28. Schulz S., Stegwee R. & Chronaki C. (2019). Standards in Healthcare Data. In: Kubben P., Dumontier M., Dekker A. (eds) Fundamentals of Clinical Data Science. Springer, Cham. doi:10.1007/978- 3-319-99713-1_3.
  29. Seifert, S., Kelm, M., Moeller, M., Mukherjee, S., Cavallaro, A., Huber, M. & Comaniciu, D. (2010). Semantic annotation of medical images. SPIE Medical Imaging, pp. 762-808. doi: 10.1117/12.844207.
  30. Sepulveda, J. L. & Young, D. S. (2013). The ideal laboratory information system. Archives of Pathology and Laboratory Medicine, 137(8), pp.1129-1140. doi: 10.5858/arpa.2012-0362-RA.
  31. Shridevi S., Viswanathan V. & Saleena B. (2018). Ontology-Driven Decision Support Systems for Health Care. In: Margret Anouncia S., Wiil U. (eds) Knowledge Computing and its Applications. Springer, Singapore. doi:10.1007/978-981-10-8258-0_4.
  32. SNOMED-CT, Systemized Nomenclature of Medicine-Clinical Terms, https//www.nlm.nih.gov/healthit/snomedct/, Accessed: 01 April 2019.
  33. Stearns, M. Q., Price, C., Spackman, K. A. & Wang, A. Y. (2001). SNOMED clinical terms: overview of the development process and project status. Proceedings of the AMIA Symposium, 662-666.
  34. Tagger, Benn, (2011). An Introduction and Guide to Successfully Implementing a LIMS (Laboratory Information Management System), [Online] http://www0.cs.ucl.ac.uk/staff/B.Tagger/LimsPaper.pdf, Accessed: 01 April 2019.
  35. Tudorache, T., Nyulas, C. I., Noy, N. F. & Musen, M. A. (2013). Using Semantic web in ICD-11: three years down the road. International Semantic Web Conference, pp. 195-211, Springer Berlin Heidelberg. doi: 10.1007/978-3-642-41338-4_13.
  36. UMLS, The Unified Medical Language System, https://www.nlm.nih.gov/research/umls/, Accessed: 01 April 2019.
  37. Uschold, M. & Gruninger, M. (1996). Ontologies: Principles, methods and applications. The knowledge engineering review, 11(02), 93-136.