The estimation of convective mass flux from radar reflectivities
2016, Journal of Applied Meteorology and Climatology
https://doi.org/10.1175/JAMC-D-15-0193.1Abstract
Cumulus parameterizations in general circulation models (GCMs) frequently apply mass-flux schemes in their description of tropical convection. Mass flux constitutes the product of the fractional area covered by cumulus clouds in a model grid box and the vertical velocity within the cumulus clouds. The cumulus area fraction profiles can be derived from precipitating radar reflectivity volumes. However, the vertical velocities are difficult to observe, making the evaluation of mass-flux schemes difficult. In this paper, the authors develop and evaluate a parameterization of vertical velocity in convective (cumulus) clouds using only radar reflectivities collected by a C-band polarimetric research radar (CPOL), operating at Darwin, Australia. The parameterization is trained using vertical velocity retrievals from a dual-frequency wind profiler pair located within the field of view of CPOL. The parametric model uses two inputs derived from CPOL reflectivities: the 0-dBZ echo-top height ...
References (37)
- Anderson, N. F., C. A. Grainger, and J. L. Stith, 2005: Character- istics of strong updrafts in precipitation systems over the central tropical Pacific Ocean and in the Amazon. J. Appl. Meteor., 44, 731-738, doi:10.1175/JAM2231.1.
- Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17, 2493-2525, doi:10.1175/ 1520-0442(2004)017,2493:RATCPP.2.0.CO;2.
- Bringi, V. N., T. D. Keenan, and V. Chandrasekar, 2001: Cor- recting C-band radar reflectivity and differential reflectivity data for rain attenuation: A self-consistent method with con- straints. IEEE Trans. Geosci. Remote Sens., 39, 1906-1915, doi:10.1109/36.951081.
- Byers, H. R., and R. R. Braham, 1949: The thunderstorm. U.S. Weather Bureau Thunderstorm Project Rep., 287 pp.
- Casey, S. P. F., E. J. Fetzer, and B. H. Kahn, 2012: Revised iden- tification of tropical oceanic cumulus congestus as viewed by CloudSat. Atmos. Chem. Phys., 12, 1587-1595, doi:10.5194/ acp-12-1587-2012.
- Collis, S., A. Protat, P. T. May, and C. Williams, 2013: Statistics of storm updraft velocities from TWP-ICE including verification with profiling measurements. J. Appl. Meteor. Climatol., 52, 1909-1922, doi:10.1175/JAMC-D-12-0230.1.
- Davies, L., C. Jakob, P. T. May, V. V. Kumar, and S. Xie, 2013: Relationships between the large-scale atmosphere and the small-scale state for Darwin, Australia. J. Geophys. Res. At- mos., 118, 11 534-11 545, doi:10.1002/jgrd.50645.
- Fierro, A. O., J. M. Simpson, M. A. LeMone, J. M. Straka, and B. F. Smull, 2009: On how hot towers fuel the Hadley cell: An ob- servational and modeling study of line-organized convection in the equatorial trough from TOGA COARE. J. Atmos. Sci., 66, 2730-2746, doi:10.1175/2009JAS3017.1.
- Giangrande, S. E., S. Collis, J. Straka, A. Protat, C. Williams, and S. Krueger, 2013: A summary of convective-core vertical ve- locity properties using ARM UHF wind profilers in Okla- homa. J. Appl. Meteor. Climatol., 52, 2278-2295, doi:10.1175/ JAMC-D-12-0185.1.
- Heymsfield, G. M., L. Tian, A. J. Heymsfield, L. Li, and S. Guimond, 2010: Characteristics of deep tropical and sub- tropical convection from nadir-viewing high-altitude airborne Doppler radar. J. Atmos. Sci., 67, 285-308, doi:10.1175/ 2009JAS3132.1.
- Hjelmfelt, M. R., H. D. Orville, R. D. Roberts, J. P. Chen, and F. J. Kopp, 1989: Observational and numerical study of a micro- burst line-producing storm. J. Atmos. Sci., 46, 2731-2743, doi:10.1175/1520-0469(1989)046,2731:OANSOA.2.0.CO;2.
- Keenan, T. D., K. Glasson, F. Cummings, T. S. Bird, J. Keeler, and J. Lutz, 1998: The BMRC/NCAR C-band polarimetric (CPOL) radar system. J. Atmos. Oceanic Technol., 15, 871-886, doi:10.1175/1520-0426(1998)015,0871:TBNCBP.2.0.CO;2.
- Kumar, V. V., C. Jakob, A. Protat, P. T. May, and L. Davies, 2013a: The four cumulus cloud modes and their progression dur- ing rainfall events: A C-band polarimetric radar perspec- tive. J. Geophys. Res. Atmos., 118, 8375-8389, doi:10.1002/ jgrd.50640.
- --, A. Protat, P. T. May, C. Jakob, G. Penide, S. Kumar, and L. Davies, 2013b: On the effects of large-scale environment and surface conditions on convective cloud characteristics over Darwin, Australia. Mon. Wea. Rev., 141, 1358-1374, doi:10.1175/MWR-D-12-00160.1.
- --, --, C. Jakob, and P. T. May, 2014: On atmospheric regu- lation of the growth of moderate to deep cumulonimbus in a tropical environment. J. Atmos. Sci., 71, 1105-1120, doi:10.1175/ JAS-D-13-0231.1.
- --, C. Jakob, A. Protat, C. R. Williams, and P. T. May, 2015: Mass-flux characteristics of tropical cumulus clouds from wind profiler observations at Darwin, Australia. J. Atmos. Sci., 72, 1837-1855, doi:10.1175/JAS-D-14-0259.1.
- Laroche, S., and I. Zawadzki, 1994: A variational analysis method for retrieval of three-dimensional wind field from single- Doppler radar data. J. Atmos. Sci., 51, 2664-2682, doi:10.1175/ 1520-0469(1994)051,2664:AVAMFR.2.0.CO;2.
- LeMone, M. A., and E. J. Zipser, 1980: Cumulonimbus verti- cal velocity events in GATE. Part I: Diameter, intensity and mass flux. J. Atmos. Sci., 37, 2444-2457, doi:10.1175/ 1520-0469(1980)037,2444:CVVEIG.2.0.CO;2.
- Lu, M.-L., Y. Liu, S. Niu, and A. M. Vogelmann, 2012: Observed impacts of vertical velocity on cloud microphysics and impli- cations for aerosol indirect effects. Geophys. Res. Lett., 39, L21808, doi:10.1029/2012GL053599.
- Luo, Z. J., J. Jeyaratnam, S. Iwasaki, H. Takahashi, and R. Anderson, 2014: Convective vertical velocity and cloud internal vertical structure: An A-Train perspective. Geophys. Res. Lett., 41, 723-729, doi:10.1002/2013GL058922.
- Marwitz, J. D., 1973: Trajectories within the weak echo regions of hailstorms. J. Appl. Meteor., 12, 1174-1182, doi:10.1175/ 1520-0450(1973)012,1174:TWTWER.2.0.CO;2.
- May, P. T., and D. K. Rajopadhyaya, 1999: Vertical velocity charac- teristics of deep convection over Darwin, Australia. Mon. Wea. Rev., 127, 1056-1071, doi:10.1175/1520-0493(1999)127,1056: VVCODC.2.0.CO;2.
- --, A. R. Jameson, T. D. Keenan, P. E. Johnston, and C. Lucas, 2002: Combined wind profiler/polarimetric radar studies of the vertical motion and microphysical characteristics of tropical sea-breeze thunderstorms. Mon. Wea. Rev., 130, 2228-2239, doi:10.1175/1520-0493(2002)130,2228:CWPPRS.2.0.CO;2.
- --, J. H. Mather, G. Vaughan, C. Jakob, G. M. McFarquhar, K. N. Bower, and G. G. Mace, 2008: The Tropical Warm Pool International Cloud Experiment. Bull. Amer. Meteor. Soc., 89, 629-645, doi:10.1175/BAMS-89-5-629.
- Protat, A., and I. Zawadzki, 1999: A variational method for real- time retrieval of three-dimensional wind field from multiple- Doppler bistatic radar network data. J. Atmos. Oceanic Technol., 16, 432-449, doi:10.1175/1520-0426(1999)016,0432: AVMFRT.2.0.CO;2.
- Ryzhkov, A. V., M. R. Kumjian, S. M. Ganson, and A. P. Khain, 2013: Polarimetric radar characteristics of melting hail. Part I: Theo- retical simulations using spectral microphysical modeling. J. Appl. Meteor. Climatol., 52, 2849-2870, doi:10.1175/JAMC-D-13-073.1.
- Shapiro, A., P. Robinson, J. Wurman, and J. Gao, 2003: Single- Doppler velocity retrieval with rapid scan radar data. J. Atmos. Oceanic Technol., 20, 1758-1775, doi:10.1175/ 1520-0426(2003)020,1758:SVRWRR.2.0.CO;2.
- Spoden, P. J., R. A. Wolf, and L. R. Lemon, 2012: Operational uses of spectrum width. Electron. J. Severe Storms Meteor., 7 (2). [Available online at http://www.ejssm.org/ojs/index.php/ ejssm/article/view/86/70.pdf.]
- Steiner, M., R. A. Houze Jr., and S. E. Yuter, 1995: Climato- logical characterization of three-dimensional storm struc- ture from operational radar and rain gauge data. J. Appl. Meteor., 34, 1978-2007, doi:10.1175/1520-0450(1995)034,1978: CCOTDS.2.0.CO;2.
- Taylor, K. E., 2001: Summarizing multiple aspects of model per- formance in a single diagram. J. Geophys. Res., 106, 7183- 7192, doi:10.1029/2000JD900719.
- Varble, A., and Coauthors, 2011: Evaluation of cloud-resolving model intercomparison simulations using TWP-ICE observa- tions: Precipitation and cloud structure. J. Geophys. Res., 116, D12206, doi:10.1029/2010JD015180.
- Williams, C. R., 2012: Vertical air motion retrieved from dual- frequency profiler observations. J. Atmos. Oceanic Technol., 29, 1471-1480, doi:10.1175/JTECH-D-11-00176.1.
- Wu, T., 2012: A mass-flux cumulus parameterization scheme for large-scale models: Description and test with observations. Climate Dyn., 38, 725-744, doi:10.1007/s00382-011-0995-3.
- Yuter, S. E., and R. A. Houze, 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 1941-1963, doi:10.1175/1520-0493(1995)123,1941:TDKAME.2.0.CO;2.
- Zipser, E. J., 2003: Some view on ''hot towers'' after 50 years of tropical field programs and two years of TRMM data. Cloud Systems, Hurricanes, and the Tropical Rainfall Measuring Mission (TRMM), Meteor. Monogr., No. 53, Amer. Meteor. Soc., 49-58, doi:10.1175/0065-9401(2003)029,0049: CSVOHT.2.0.CO;2.
- --, and K. R. Lutz, 1994: The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Mon. Wea. Rev., 122, 1751-1759, doi:10.1175/1520-0493(1994)122,1751:TVPORR.2.0.CO;2.
- Zuluaga, M. D., and R. A. Houze Jr., 2013: Evolution of the pop- ulation of precipitating convective systems over the equato- rial Indian Ocean in active phases of the Madden-Julian oscillation. J. Atmos. Sci., 70, 2713-2725, doi:10.1175/ JAS-D-12-0311.1.