Academia.eduAcademia.edu

Outline

Alternative space definitions for P systems with active membranes

Journal of Membrane Computing

https://doi.org/10.1007/S41965-021-00074-2

Abstract

The first definition of space complexity for P systems was based on a hypothetical real implementation by means of biochemical materials, and thus it assumes that every single object or membrane requires some constant physical space. This is equivalent to using a unary encoding to represent multiplicities for each object and membrane. A different approach can also be considered, having in mind an implementation of P systems in silico; in this case, the multiplicity of each object in each membrane can be stored using binary numbers, thus reducing the amount of needed space. In this paper, we give a formal definition for this alternative space complexity measure, we define the corresponding complexity classes and we compare such classes both with standard space complexity classes and with complexity classes defined in the framework of P systems considering the original definition of space.

References (43)

  1. Alhazov, A., & Ishdorj, T. (2004). Membrane operations in P sys- tems with active membranes. In: Păun, Gh., Riscos-Núñez, A., Romero-Jiménez, A., Sancho-Caparrini, F. (eds.) Second Brain- storming Week on Membrane Computing. pp. 37-44. No. 1/2004 in RGNC Reports, Fénix Editora.
  2. Alhazov, A., Leporati, A., Mauri, G., Porreca, A.E., & Zandron, C. (2012). The computational power of exponential-space P systems with active membranes. In: Martínez-del-Amor, M.A., Păun, Gh., Pérez-Hurtado, I., Romero-Campero, F.J. (eds.) Tenth Brainstorm- ing Week on Membrane Computing, Volume I. pp. 35-60. No.
  3. /2012 in RGNC Reports, Fénix Editora, http:// www. gcn. us. es/ icdmc 2012_ proce edings.
  4. Alhazov, A., Leporati, A., Mauri, G., Porreca, A. E., & Zandron, C. (2014). Space complexity equivalence of P systems with active membranes and Turing machines. Theoretical Computer Science, 529, 69-81. https:// doi. org/ 10. 1016/j. tcs. 2013. 11. 015.
  5. Alhazov, A., & Pan, L. (2004). Polarizationless P systems with active membranes. Grammars, 7, 141-159.
  6. Alhazov, A., Pan, L., & Păun, Gh. (2004). Trading polarizations for labels in P systems with active membranes. Acta Informatica, 41(2-3), 111-144. https:// doi. org/ 10. 1007/ s00236-004-0153-z.
  7. Alhazov, A., & Pérez-Jiménez, M.J. (2007). Uniform solution to QSAT using polarizationless active membranes. In: Durand-Lose, J., Margenstern, M. (eds.) Machines, Computations, and Univer- sality, 5th International Conference, MCU 2007, Lecture Notes in Computer Science, vol. 4664, pp. 122-133. Springer, https:// doi. org/ 10. 1007/ 978-3-540-74593-8_ 11.
  8. Buño, K., & Adorna, H. (2020). Distributed computation of a kP system with active membranes for SAT using clause completion. Journal of Membrane Computing, 2(2), 108-120. https:// doi. org/ 10. 1007/ s41965-020-00040-4.
  9. Cecilia, J., García, J., Guerrero, G., Martínez-del Amor, M., Pérez-Hurtado, I., & Pérez-Jiménez, M. (2010). Simulating a P system based efficient solution to SAT by using GPUs. Journal of Logic and Algebraic Programming, 79(6), 317-325.
  10. García-Quismondo, M., Gutiérrez-Escudero, R., Martínez-del Amor, M.A., Orejuela-Pinedo, E., & Pérez-Hurtado, I. (2009).
  11. P-Lingua 2.0: A software framework for cell-like P systems. Inter- national Journal of Computers, Communications & Control 4(3), 234-243.
  12. Gazdag, Z., & Kolonits, G. (2013). A new approach for solv- ing SAT by P systems with active membranes. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, G. (eds.) Membrane Computing, 13th International Conference, CMC 2012. Lecture Notes in Computer Science, vol. 7762, pp. 195- 207. Springer.
  13. Gazdag, Z., & Kolonits, G. (2019). A new method to simulate restricted variants of polarizationless P systems with active mem- branes. Journal of Membrane Computing, 1(4), 251-261.
  14. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A., & Romero-Campero, F.J. (2006). On the power of dissolu- tion in P systems with active membranes. In: Freund, R., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) Membrane Computing, 6th International Workshop, WMC 2005. Lecture Notes in Com- puter Science, vol. 3850, pp. 224-240. Springer, https:// doi. org/ 10. 1007/ 11603 047.
  15. Gutiérrez-Naranjo, M. A., Pérez-Jiménez, M. J., Riscos-Nuñez, A., & Romero-Campero, F. J. (2006). Computational efficiency of dissolution rules in membrane systems. International Journal of Computer Mathematics, 83(7), 593-611. https:// doi. org/ 10. 1080/ 00207 16060 10654 13.
  16. Leporati, A., Ferretti, C., Mauri, G., & Zandron, C. (2008). Com- plexity aspects of polarizationless membrane systems. Natural Computing, 4(8), 703-717.
  17. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, C. (2014). Constant-space P systems with active membranes. Fundamenta Informaticae, 134(1-2), 111-128. https:// doi. org/ 10. 3233/ FI-2014-1094.
  18. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, C. (2015). Membrane division, oracles, and the counting hierar- chy.
  19. Fundamenta Informaticae, 138(1-2), 97-111. https:// doi. org/ 10. 3233/ FI-2015-1201.
  20. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, C. (2019). Characterizing PSPACE with shallow non-confluent P systems. Journal of Membrane Computing, 1(2), 75-84. https:// doi. org/ 10. 1007/ s41965-019-00011-4.
  21. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zan- dron, C. (2020). Shallow laconic P systems can count. Journal of Membrane Computing, 2(1), 49-58. https:// doi. org/ 10. 1007/ s41965-020-00032-4.
  22. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, C. (2020). A Turing machine simulation by P systems without charges. Journal of Membrane Computing, 2(2), 71-79. https:// doi. org/ 10. 1007/ s41965-020-00031-5.
  23. Leporati, A., Mauri, G., Porreca, A.E., & Zandron, C. (2014). A gap in the space hierarchy of P systems with active membranes. Journal of Automata, Languages and Combinatorics 19(1-4), 173-184, http:// theo. cs. ovgu. de/ jalc/ search/ j19_i. html.
  24. Martinez del Amor, M., Orellana Martín, D., Cabarle, F.G., Pérez Jiménez, M.D., & Adorna, H.N. (2017). Sparse-matrix rep- resentation of spiking neural P systems for GPUs. In: Proceedings of BWMC 2017: 15th Brainstorming Week on Membrane Com- puting. pp. 161-170, https:// idus. us. es/ handle/ 11441/ 67895.
  25. Murphy, N., & Woods, D. (2007). Active membrane systems with- out charges and using only symmetric elementary division char- acterise P. In: Eleftherakis, G., Kefalas, P., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) Membrane Computing, 8th International Workshop, WMC 2007. Lecture Notes in Computer Science, vol. 4860, pp. 367-384, https:// doi. org/ 10. 1007/ 978-3-540-77312- 2_ 23.
  26. Murphy, N., & Woods, D. (2011). The computational power of membrane systems under tight uniformity conditions. Nat- ural Computing, 10(1), 613-632. https:// doi. org/ 10. 1007/ s11047-010-9244-7.
  27. Orellana-Martín, D., Valencia-Cabrera, L., Riscos-Núñez, A., & Pérez-Jiménez, M. J. (2019). P systems with proteins: a new frontier when membrane division disappears. Journal of Membrane Computing, 1(1), 29-39. https:// doi. org/ 10. 1007/ s41965-018-00003-w.
  28. Pan, L., Alhazov, A., & Ishdorj, T. O. (2005). Further remarks on P systems with active membranes, separation, merging, and release rules. Soft Computing, 9(9), 686-690. https:// doi. org/ 10. 1007/ s00500-004-0399-y.
  29. Papadimitriou, C. H. (1993). Computational Complexity. New York: Addison-Wesley.
  30. Păun, Gh. (2001). P systems with active membranes: Attacking NP-complete problems. Journal of Automata, Languages and Combinatorics, 6(1), 75-90.
  31. Păun, Gh, Rozenberg, G., & Salomaa, A. (Eds.). (2010). The Oxford Handbook of Membrane Computing. Oxford: Oxford University Press.
  32. Porreca, A.E., Leporati, A., Mauri, G., & Zandron, C. (2009). Introducing a space complexity measure for P systems. Interna- tional Journal of Computers, Communications & Control 4(3), 301-310, http:// univa gora. ro/ jour/ index. php/ ijccc/ artic le/ view/ 2779.
  33. Porreca, A. E., Leporati, A., Mauri, G., & Zandron, C. (2011). P systems with active membranes: Trading time for space. Natural Computing, 10(1), 167-182. https:// doi. org/ 10. 1007/ s11047-010-9189-x.
  34. Porreca, A. E., Leporati, A., Mauri, G., & Zandron, C. (2011). P systems with active membranes working in polynomial space. International Journal of Foundations of Computer Science, 22(1), 65-73. https:// doi. org/ 10. 1142/ S0129 05411 10078 36.
  35. Porreca, A.E., Leporati, A., Mauri, G., & Zandron, C. (2013). Sublinear-space P systems with active membranes. In: Csuhaj- Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, G. (eds.) Membrane Computing, 13th International Conference, CMC 2012. Lecture Notes in Computer Science, vol. 7762, pp. 342-357. Springer, https:// doi. org/ 10. 1007/ 978-3-642-36751-9_ 23.
  36. Porreca, A. E., Mauri, G., & Zandron, C. (2006). Complexity classes for membrane systems. RAIRO Theoretical Informatics and Applications, 40(2), 141-162. https:// doi. org/ 10. 1051/ ita: 20060 01.
  37. Porreca, A. E., Mauri, G., & Zandron, C. (2010). Non-confluence in divisionless P systems with active membranes. Theoretical Computer Science, 411(6), 878-887. https:// doi. org/ 10. 1016/j. tcs. 2009. 07. 032.
  38. Sosík, P. (2003). The computational power of cell division in P systems: Beating down parallel computers? Natural Computing, 2(3), 287-298. https:// doi. org/ 10. 1023/A: 10254 01325 428.
  39. Sosík, P. (2019). P systems attacking hard problems beyond NP: a survey. Journal of Membrane Computing, 1(3), 198-208. https:// doi. org/ 10. 1007/ s41965-019-00017-y.
  40. Valencia-Cabrera, L., Orellana-Martín, D., Martínez-del-Amor, M. A., Riscos-Núñez, A., & Pérez-Jiménez, M. J. (2017). Com- putational efficiency of minimal cooperation and distribution in polarizationless P systems with active membranes. Fundamenta Informaticae, 153(1-2), 147-172. https:// doi. org/ 10. 3233/ FI-2017-1535.
  41. Valencia-Cabrera, L., Orellana-Martín, D., Martínez-del-Amor, M. A., Riscos-Núñez, A., & Pérez-Jiménez, M. J. (2017). Reach- ing efficiency through collaboration in membrane systems: Dissolution, polarization and cooperation. Theoretical Computer Science, 701, 226-234. https:// doi. org/ 10. 1016/j. tcs. 2017. 04. 015.
  42. Zandron, C. (2020). Bounding the space in P systems with active membranes. Journal of Membrane Computing, 2(2), 137-145. https:// doi. org/ 10. 1007/ s41965-020-00039-x.
  43. Zandron, C., Ferretti, C., & Mauri, G. (2001). Solving NP- complete problems using P systems with active membranes. In: Antoniou, I., Calude, C.S., Dinneen, M.J. (eds.) Unconventional Models of Computation, UMC'2K, Proc. Second Int. Conference, pp. 289-301. Springer, https:// doi. org/ 10. 1007/ 978-1-4471-0313- 4_ 21.