Modeling and Simulation for Product Design Process
2013, Simulation
https://doi.org/10.1177/0037549712451776Abstract
Descriptive simulation finds the performance measure of a system, given a particular value for the input parameters. Inverse simulation reverses this and attempts to find the controllable input parameters required to achieve a particular performance measure. This paper proposes using a ‘stochastic approximation’ to estimate the necessary design parameters within a range of desired accuracy. The proposed solution algorithm is based on Newton’s methods using a single-run simulation to minimize a loss function that measures the deviation from a target value. The properties of the solution algorithm and the validity of the estimates are examined by applying them to a reliability system with a known analytical solution.
References (43)
- Chung Ch. Simulation Modeling Handbook: A Practical Approach. New York: CRC Press, 2003.
- Morgan B. Applied Stochastic Modelling. New York: Chapman and Hall/ CRC Press, 2008.
- Samarskii A and Mikhailov A. Principles of Mathematical Modelling: Ideas, Methods, Examples. New York: CRC Press, 2002.
- Eilam E and Chikofsky E. Reversing: Secrets of Reverse Engineering. New York: John Wiley & Sons, 2008.
- Ross P. Taguchi Techniques for Quality Engineering. New York: McGraw-Hill, 1996.
- Kleijnen J. Regression metamodel for generalizing simula- tion results. IEEE Trans Syst Man Cybernet 1979; 9: 93-96.
- Friedman L. The Simulation Metamodel. Boston, MA: Kluwer Academic Publishers, 1996.
- Yu B and Popplewell K. Metamodels in manufacturing: A review. Int J Production Res 1994; 32: 787-796.
- Arsham H. Stochastic optimization of discrete event systems simulation. Microelectron Reliab 1996; 36: 1357-1368.
- Arsham H. Techniques for Monte Carlo optimizing. Monte Carlo Meth Appl 1998; 4: 181-230.
- Arsham H. Gradient-based optimization techniques for dis- crete event systems simulation. In Wah BW (ed.), Wiley Encyclopedia of Computer Science and Engineering. New York: John Wiley & Sons, 2009, pp. 110-127.
- Arsham H. A simulation technique for estimation in per- turbed stochastic activity networks Simulation 1992; 58: 258-267.
- Kleijnen J and Rubinstein R. Optimization and sensitivity analysis of computer simulation models by score function method. Eur J Operat Res 1996; 88: 413-427.
- Rubinstein R and Melamed B. Modern Simulation and Modeling. New York: John Wiley & Sons, 1998.
- Rubinstein R and Shapiro A. Discrete Event Systems: Sensitivity Analysis and Stochastic Optimization by the Score Function Method. New York: John Wiley & Sons, 1998.
- Arsham H, Feuerverger A, McLeish D, Kreimer J and Rubinstein R. Sensitivity analysis and the 'what-if' problem in simulation analysis. Math Comput Modell 1989; 12: 193-219.
- Polak E. Optimization: Algorithms and Consistent Approximations. New York: Springer, 1997.
- Kiefer J and Wolfowitz J. Stochastic estimation of the maximum of a regression function. Ann Math Stat 1952; 23: 462-466.
- Spall J. Implementation of the simultaneous perturbation algorithm for stochastic optimization. IEEE Trans Aerospace Electron Syst 1998; 34: 817-823.
- Spall J. Adaptive stochastic approximation by the simulta- neous perturbation method. IEEE Trans Automatic Control 2000; 45: 1839-1853.
- Spall J. Multivariate stochastic approximation using a simul- taneous perturbation derivative approximation. IEEE Trans Automatic Control 1992; 37: 332-341.
- Spall J. A one-measurement form of simultaneous per- turbation stochastic approximation. Automatica 1997; 33: 109-112.
- Cao X-R. Perturbation analysis of discrete event systems: Concepts, algorithms, and applications. Eur J Operat Res 1996; 91: 1-13.
- Cassandras C. Discrete Event Systems: Modeling and Performance Analysis. Boston, MA: Irwin, 1993.
- Fu M. Optimization via simulation: A review. Ann Operat Res 1994; 53: 199-247.
- Fu MC and Hu J-Q. Conditional Monte Carlo: Gradient Estimation and Optimization Applications. Boston, MA: Kluwer Academic Publishers, 1997.
- Glasserman P. Derivative Estimation via Perturbation Analysis. Boston, MA: Kluwer Academic Publishers, 1991.
- Glynn P. Likelihood ratio derivative estimation for stochastic systems. Commun ACM 1990; 33: 75-84.
- Glynn P and Heidelberger P. Bias properties of budget con- strained simulations. Operat Res 1990; 38: 801-814.
- L'Ecuyer P. On the interchange of derivative and expectation for likelihood derivative estimation. Managem Sci 1995; 41: 738-748.
- Vazquez-Abad F. Sensitivity analysis for stochastic DEDS: An overview. Aportaciones Matematicas Notas de Investigacion 1992; 7: 163-182.
- Yakowitz S, L'Ecuyer P and Vazquez-Abad F. Global sto- chastic optimization with low-dispersion point sets. Operat Res 2000; 48: 939-950.
- Clymer J. System design and evaluation using discrete event simulation with AI. Eur J Operat Res 1995; 84: 213-225.
- Law A and Kelton W. Simulation Modeling and Analysis. New York, McGraw-Hill, 2000.
- Wild R and Pignatiello J Jr. An experimental design strategy for designing robust systems using discrete-event simulation. Simulation 1991; 57: 358-368.
- Robbins R and Monro S. A stochastic approximation method. Ann Math Stat 1951; 22: 400-407.
- Dippon J and Renz J. Weighted means in stochastic app- roximation of minima. SIAM J Control Optimiz 1997; 35: 1811-1827.
- Chen H and Schmeiser B. Stochastic root finding via retro- spective approximation. IIE Transactions 2001; 33: 259- 275.
- Kleijnen J and Van Groenendaal W. Simulation: A Statistical Perspective. Chichester: John Wiley & Sons, 1992.
- Barlow R and Proschan F. Statistical Theory of Reliability and Life Testing Probability Models. New York: Holt Rinehart and Winston, 1975.
- Ruppert D. A Newton-Raphson version of the multivariate Robbins-Monro procedure. Ann Stat 1985; 13: 236-245.
- Benveniste A, Metivier M and Priouret P. Adaptive Algorithms and Stochastic Approximations. New York: Springer-Verlag, 1990.
- Wei C. Multivariate adaptive stochastic approximation. Ann Stat 1987; 15: 1115-1130.