Academia.eduAcademia.edu

Outline

Strongly Starlike Functions and Related Classes

Tamkang Journal of Mathematics

https://doi.org/10.5556/J.TKJM.52.2021.3271

Abstract

We consider  univalent functions, analytic in the unit disc $ |z|<1$in the complex plane ${\mathbb{C}}$ which map $ |z|<1$ onto a domainwith some nice property. The purpose of this paper is to find somenew conditions for strong starlikeness and some related results.

References (19)

  1. D. A. Brannan and W. E. Kirwan, On some classes of bounded univalent functions, J. London Math. Soc. 1(1969)(2) 431-443.
  2. A. W. Goodman, Univalent Functions, Vol. II, Mariner Publishing Co.: Tampa, Florida (1983).
  3. W. Kaplan, Close to convex schlicht functions, Michigan Math. J. 1(1952) 169-185.
  4. Z. Lewandowski, Sur l'identité de certaines classes de fonctions univalentes, I. Ann. Univ. Mariae Curie-Skłodowska Sect. A 12(1958) 131-146.
  5. Z. Lewandowski, Sur l'identité de certaines classes de fonctions univalentes, II. Ann. Univ. Mariae Curie-Skłodowska Sect. A 14(1960) 19-46.
  6. Z. Lewandowski, S. Miller, E. Złotkiewicz, Gamma starlike functions, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 28(1974) 53-58.
  7. M. Nunokawa, On Properties of Non-Carathéodory Functions, Proc. Japan Acad. Ser. A 68(6)(1992) 152-153.
  8. M. Nunokawa, On the order of strongly starlikeness of strongly convex functions, Proc. Japan Acad. Ser. A 69(7)(1993) 234-237.
  9. M. Nunokawa and J. Sokół, Strongly gamma-starlike functions of order alpha, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 67(2)(2013) 43-51.
  10. M. Nunokawa and J. Sokół, On an extension of Sakaguchi's result, Journal of Mathematical Inequalities, 9(3)(2015) 683-697.
  11. S. Ozaki, On the theory of multivalent functions, Sci. Rep. Tokyo Bunrika Daig. A2(1935) 167-188.
  12. Ch. Pommerenke, On close-to-convex analytic functions, Trans. Amer. Math. Soc. 114(1)(1965) 176-186.
  13. M. Reade, The coefficients of close-to-convex functions, Duke Math. J. 23(1956) 459-462.
  14. M. S. Robertson, On the theory of univalent functions, Ann. Math. 37(1936) 374-408.
  15. J. Stankiewicz, Quelques problèmes extrèmaux dans les classes des fonctions α- angulairement ètoilèes, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 20(1966) 59-75.
  16. T. Umezawa, On the theory of univalent functions, Tohoku Math. J. 7(1955) 212-228.
  17. T. Umezawa, Multivalently close-to-convex functions, Proc. Amer. Math. Soc. 8(1957) 869- 874.
  18. D. R. Wilken and J. Feng, A remark on convex and starlike functions, J. London Math. Soc. 21(1980)(2) 287-290.
  19. Janusz Sokół University of Rzeszów, College of Natural Sciences, ul. Prof. Pigonia 1, 35-310 Rzeszów, Poland E-mail: jsokol@ur.edu.pl