Strongly Starlike Functions and Related Classes
Tamkang Journal of Mathematics
https://doi.org/10.5556/J.TKJM.52.2021.3271Abstract
We consider univalent functions, analytic in the unit disc $ |z|<1$in the complex plane ${\mathbb{C}}$ which map $ |z|<1$ onto a domainwith some nice property. The purpose of this paper is to find somenew conditions for strong starlikeness and some related results.
References (19)
- D. A. Brannan and W. E. Kirwan, On some classes of bounded univalent functions, J. London Math. Soc. 1(1969)(2) 431-443.
- A. W. Goodman, Univalent Functions, Vol. II, Mariner Publishing Co.: Tampa, Florida (1983).
- W. Kaplan, Close to convex schlicht functions, Michigan Math. J. 1(1952) 169-185.
- Z. Lewandowski, Sur l'identité de certaines classes de fonctions univalentes, I. Ann. Univ. Mariae Curie-Skłodowska Sect. A 12(1958) 131-146.
- Z. Lewandowski, Sur l'identité de certaines classes de fonctions univalentes, II. Ann. Univ. Mariae Curie-Skłodowska Sect. A 14(1960) 19-46.
- Z. Lewandowski, S. Miller, E. Złotkiewicz, Gamma starlike functions, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 28(1974) 53-58.
- M. Nunokawa, On Properties of Non-Carathéodory Functions, Proc. Japan Acad. Ser. A 68(6)(1992) 152-153.
- M. Nunokawa, On the order of strongly starlikeness of strongly convex functions, Proc. Japan Acad. Ser. A 69(7)(1993) 234-237.
- M. Nunokawa and J. Sokół, Strongly gamma-starlike functions of order alpha, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 67(2)(2013) 43-51.
- M. Nunokawa and J. Sokół, On an extension of Sakaguchi's result, Journal of Mathematical Inequalities, 9(3)(2015) 683-697.
- S. Ozaki, On the theory of multivalent functions, Sci. Rep. Tokyo Bunrika Daig. A2(1935) 167-188.
- Ch. Pommerenke, On close-to-convex analytic functions, Trans. Amer. Math. Soc. 114(1)(1965) 176-186.
- M. Reade, The coefficients of close-to-convex functions, Duke Math. J. 23(1956) 459-462.
- M. S. Robertson, On the theory of univalent functions, Ann. Math. 37(1936) 374-408.
- J. Stankiewicz, Quelques problèmes extrèmaux dans les classes des fonctions α- angulairement ètoilèes, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 20(1966) 59-75.
- T. Umezawa, On the theory of univalent functions, Tohoku Math. J. 7(1955) 212-228.
- T. Umezawa, Multivalently close-to-convex functions, Proc. Amer. Math. Soc. 8(1957) 869- 874.
- D. R. Wilken and J. Feng, A remark on convex and starlike functions, J. London Math. Soc. 21(1980)(2) 287-290.
- Janusz Sokół University of Rzeszów, College of Natural Sciences, ul. Prof. Pigonia 1, 35-310 Rzeszów, Poland E-mail: jsokol@ur.edu.pl