Academia.eduAcademia.edu

Outline

A note on strong protomodularity, actions and quotients

2013

Abstract

In order to study the problems of extending an action along a quotient of the acted object and along a quotient of the acting object, we investigate some properties of the fibration of points. In fact, we obtain a characterization of protomodular categories among quasi-pointed regular ones, and, in the semi-abelian case, a characterization of strong protomodular categories. Eventually, we return to the initial questions by stating the results in terms of internal actions.

References (14)

  1. J. Adámek, H. Herrlich, and G. E. Strecker, Abstract and concrete categories: the joy of cats. Wiley (1990).
  2. M. Barr, P. A. Grillet and D. H. van Osdol Exact categories and Categories of Sheaves. Lecture Notes in Mathematics, Vol. 236, Springer, Berlin (1971).
  3. F. Borceux, G. Janelidze and G. M. Kelly, Internal object actions. Comment. Math. Univ. Carolinae 46 (2005) 235-255.
  4. F. Borceux and D. Bourn, Mal'cev, Protomodular, Homological and Semi-abelian Categories. Kluwer Academic Publishers (2004).
  5. D. Bourn, Normalization equivalence, kernel equivalence and affine cat- egories. Lecture Notes in Mathematics, Vol. 1488, Springer, Berlin, 1991, 43-62.
  6. D. Bourn, Normal functors and strong protomodularity. Theory Appl. Cat- egories 7 (2000) 206-218.
  7. D. Bourn, Normal subobjects and abelian objects in protomodular cate- gories. J. Algebra 228 (2000) 143-164.
  8. D. Bourn, 3 × 3 Lemma and Protomodularity. J. Algebra 236 (2001) 778- 795.
  9. D. Bourn and G. Janelidze, Protomodularity, descent and semi-direct products, Theory Appl. Categories 4 (1998) 37-46.
  10. G. Janelidze, L. Márki and W. Tholen, Semi-abelian categories. J. Pure Appl. Algebra 168 (2002) 367-386.
  11. S. Mantovani and G. Metere, Internal crossed modules and Peiffer condition. Theory Appl. Categories, 23 No. 6 (2010) 113-135.
  12. G. Orzech, Obstruction theory in algebraic categories i and ii. J. Pure Appl. Algebra 2 (1972) 287-314 and 315-340.
  13. S. Paoli, Internal categorical structure in homotopical algebra, in Towards Higher Categories, The IMA Volumes in Mathematics and its Applications 152 (2010) 85-103.
  14. D. Rodelo, Moore categories. Theory Appl. Categories, 12 No. 6 (2004) 237-247.