A Partial Predicate Calculus in a Two-Valued Logic
1983, Mathematical Logic Quarterly
https://doi.org/10.1002/MALQ.19830290410Abstract
AI
AI
This paper introduces a partial predicate calculus (PPC) that extends traditional two-valued logic by accommodating partially defined relations and propositions. It develops a specific sublanguage (A-PPC) for defined formulas, demonstrating that all properties expressible in PPC can also be represented in A-PPC using a sound and complete deduction calculus. The integration of additional symbols allows for a richer expression of logical constructs, thus enhancing the framework within which mathematicians can work with partial functions.
References (8)
- CLIFFORD, A., and G. PRESTON, The algebraic t,lieory of semigroups. Providence, R.I., 1961.
- HERMES, H., Introduction to Mathematical Logic. Berlin 1973.
- HOOQEWIJS, A., A calculus of partially defined predicates. Gent 1977.
- HOOQEWIJS, A., On a formalization of t,he non-definedness notion. This Zeitschr. 26 (1979),
- MARKWALD, W., Pradikatenlogik mit partiell definiert,en Funktionen. Arch. Math. Log. 14
- MARKWALD, W., Pradikatenlogik mit partiell definierten Funktionen 11. i2rch. Math. Log. 16 213-217. (1971), 10-23. (1974), 15-22.
- Albert Hogewijs Seminarie voor Algebra Rijksuniversiteit Gent Galglaan 2 B-9000 Gent -Belgium - (Eingegangen am 2. Oktober 1981)
- *