Dynamics of an ecological model living on the edge of chaos
2009, Applied Mathematics and Computation
https://doi.org/10.1016/J.AMC.2009.01.006Abstract
We present a new ecological model, which displays ''edge of chaos" (EoC) in parameter space. This suggests that ecological systems are not chaotic, instead, their dynamics can be characterized as short-term recurrent chaos. The system's dynamics is unpredictable and admits bursts of short-term predictability. We also provide results, which suggest that fully developed chaos will rarely be observed in natural systems.
References (26)
- S.A. Kauffman, Antichaos and adaptation, Sci. Am. (1991) 78-84.
- S.A. Kauffman, Origins of Order: Self-Organization and Selection in Evolution, Oxford University Press, 1993.
- S.A. Levin, Complex adaptive systems: exploring the known, the unknown and the unknowable, Bull. Am. Math. Soc. 40 (1) (2002) 3-19.
- S.A. Levin, Fragile Dominion: Complexity and the Commons, Perseus Books, Reading, MA, 1999.
- S.E. Jorgensen, The growth rate of zooplankton at the edge of chaos: ecological models, J. Theor. Biol. 175 (1995) 13-21.
- M.L. Rosenzweig, R.H. MacArthur, Graphical representation and stability conditions of predator-prey interactions, Am. Nat. 97 (1963) 205-223.
- D.L. DeAngelis, R.A. Goldstein, R.V. O'Neill, A model for trophic interaction, Ecology 56 (1975) 881-892.
- T.W. Hwang, Global analysis of the predator-prey system with Beddington-DeAngelis functional response, J. Math. Anal. Appl. 281 (2003) 395-401.
- T.W. Hwang, Uniqueness of limit cycles of the predator-prey system with Beddington-DeAngelis functional response, J. Math. Anal. Appl. 290 (2004) 13-122.
- J.R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Animal Ecol. 44 (1975) 331-340.
- J.T. Tanner, The stability and intrinsic growth rates of prey and predator populations, Ecology 56 (1975) 855-867.
- E.C. Pielou, Mathematical Ecology, John Wiley and Sons, New York, 1962.
- R.K. Upadhyay, S.R.K. Iyengar, V. Rai, Chaos: an ecological reality?, Int J. Bifurcation Chaos 8 (6) (1998) 1325-1333.
- G.W. Salt, Predation in experimental protozoan populations (Woodruffia-paramecium), Ecol. Monogr. 37 (1967) 113-144.
- M.P. Hassell, Mutual interference between searching insect parasites, J. Animal Ecol. 40 (1971) 473-486.
- R.K. Upadhyay, V. Rai, Why chaos is rarely observed in natural populations?, Chaos, Solitons Fractals 8 (1997) 1933-1939.
- V. Rai, R.K. Upadhyay, Evolving to the edge of chaos: chance or necessity?, Chaos, Solitons Fractals 30 (2006) 1079-1086.
- A.P. Moller, S. Legendre, Allee effect, sexual selection and demographic stochasticity, Oikos 92 (2001) 27-34.
- S.E. Jorgensen, S. Nors-Nielsen, L.A. Jorgensen, Handbook of Ecological parameters and Ecotoxicology, Elsevier, Amsterdam, 1991.
- B.E. Kendall, Nonlinear Dynamics and Chaos, Encyclopedia of Life Sciences, Mac Millan Publishers Ltd., Nature Publishing Group, New York, 2001.
- V. Rai, Chaos in natural populations: edge or wedge?, Eco Comp. 1 (2004) 127-138.
- V. Rai, R.K. Upadhyay, Chaotic population dynamics and the biology of the top-predator, Chaos, Solitons Fractal 21 (2004) 1195-1204.
- P. Turchin, S.P. Ellner, Living on the edge of chaos: population dynamics of Fennoscandian voles, Ecology 81 (2000) 3099-3116.
- R.K. Upadhyay, V.S.H. Rao, Short-term recurrent chaos and role of toxin producing phytoplankton (TPP) on chaotic dynamics in aquatic systems, Chaos, Solitons Fractal. doi:10.1016/j.chaos.2007.06.132.
- S. Rinaldi, O. De Feo, Top-predator abundance and chaos in tritrophic food chains, Ecol. Lett. 2 (1999) 6-10.
- J. Vandermeer, Loose coupling of predator-prey cycles: entrainment, chaos and intermittency in the classical MacArthur consumer-resource equations, Am. Nat. 141 (1993) 687-716.