Academia.eduAcademia.edu

Outline

Dynamics of an ecological model living on the edge of chaos

2009, Applied Mathematics and Computation

https://doi.org/10.1016/J.AMC.2009.01.006

Abstract

We present a new ecological model, which displays ''edge of chaos" (EoC) in parameter space. This suggests that ecological systems are not chaotic, instead, their dynamics can be characterized as short-term recurrent chaos. The system's dynamics is unpredictable and admits bursts of short-term predictability. We also provide results, which suggest that fully developed chaos will rarely be observed in natural systems.

References (26)

  1. S.A. Kauffman, Antichaos and adaptation, Sci. Am. (1991) 78-84.
  2. S.A. Kauffman, Origins of Order: Self-Organization and Selection in Evolution, Oxford University Press, 1993.
  3. S.A. Levin, Complex adaptive systems: exploring the known, the unknown and the unknowable, Bull. Am. Math. Soc. 40 (1) (2002) 3-19.
  4. S.A. Levin, Fragile Dominion: Complexity and the Commons, Perseus Books, Reading, MA, 1999.
  5. S.E. Jorgensen, The growth rate of zooplankton at the edge of chaos: ecological models, J. Theor. Biol. 175 (1995) 13-21.
  6. M.L. Rosenzweig, R.H. MacArthur, Graphical representation and stability conditions of predator-prey interactions, Am. Nat. 97 (1963) 205-223.
  7. D.L. DeAngelis, R.A. Goldstein, R.V. O'Neill, A model for trophic interaction, Ecology 56 (1975) 881-892.
  8. T.W. Hwang, Global analysis of the predator-prey system with Beddington-DeAngelis functional response, J. Math. Anal. Appl. 281 (2003) 395-401.
  9. T.W. Hwang, Uniqueness of limit cycles of the predator-prey system with Beddington-DeAngelis functional response, J. Math. Anal. Appl. 290 (2004) 13-122.
  10. J.R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Animal Ecol. 44 (1975) 331-340.
  11. J.T. Tanner, The stability and intrinsic growth rates of prey and predator populations, Ecology 56 (1975) 855-867.
  12. E.C. Pielou, Mathematical Ecology, John Wiley and Sons, New York, 1962.
  13. R.K. Upadhyay, S.R.K. Iyengar, V. Rai, Chaos: an ecological reality?, Int J. Bifurcation Chaos 8 (6) (1998) 1325-1333.
  14. G.W. Salt, Predation in experimental protozoan populations (Woodruffia-paramecium), Ecol. Monogr. 37 (1967) 113-144.
  15. M.P. Hassell, Mutual interference between searching insect parasites, J. Animal Ecol. 40 (1971) 473-486.
  16. R.K. Upadhyay, V. Rai, Why chaos is rarely observed in natural populations?, Chaos, Solitons Fractals 8 (1997) 1933-1939.
  17. V. Rai, R.K. Upadhyay, Evolving to the edge of chaos: chance or necessity?, Chaos, Solitons Fractals 30 (2006) 1079-1086.
  18. A.P. Moller, S. Legendre, Allee effect, sexual selection and demographic stochasticity, Oikos 92 (2001) 27-34.
  19. S.E. Jorgensen, S. Nors-Nielsen, L.A. Jorgensen, Handbook of Ecological parameters and Ecotoxicology, Elsevier, Amsterdam, 1991.
  20. B.E. Kendall, Nonlinear Dynamics and Chaos, Encyclopedia of Life Sciences, Mac Millan Publishers Ltd., Nature Publishing Group, New York, 2001.
  21. V. Rai, Chaos in natural populations: edge or wedge?, Eco Comp. 1 (2004) 127-138.
  22. V. Rai, R.K. Upadhyay, Chaotic population dynamics and the biology of the top-predator, Chaos, Solitons Fractal 21 (2004) 1195-1204.
  23. P. Turchin, S.P. Ellner, Living on the edge of chaos: population dynamics of Fennoscandian voles, Ecology 81 (2000) 3099-3116.
  24. R.K. Upadhyay, V.S.H. Rao, Short-term recurrent chaos and role of toxin producing phytoplankton (TPP) on chaotic dynamics in aquatic systems, Chaos, Solitons Fractal. doi:10.1016/j.chaos.2007.06.132.
  25. S. Rinaldi, O. De Feo, Top-predator abundance and chaos in tritrophic food chains, Ecol. Lett. 2 (1999) 6-10.
  26. J. Vandermeer, Loose coupling of predator-prey cycles: entrainment, chaos and intermittency in the classical MacArthur consumer-resource equations, Am. Nat. 141 (1993) 687-716.