Video segmentation by MAP labeling of watershed segments
2001, Pattern Analysis and …
https://doi.org/10.1109/34.910886Abstract
AI
AI
An approach for video segmentation integrating spatial and temporal constraints is proposed, allowing simultaneous estimation of motion information and segmentation fields. This method relies on Markov Random Fields (MRF) to maximize the conditional a posteriori probability of the label field, optimizing through an iterative procedure to accommodate occlusions. By utilizing segments with low intensity variation and organizing them into motion-associated regions, the proposed method improves segmentation accuracy in complex visual environments.
References (29)
- M.J. Black and P. Anandan, ªThe Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow-Fields,º Computer Vision and Image Understanding, vol. 63, no. 1, pp. 75-104, Jan. 1996.
- H.H. Nagel, ªOn the Estimation of Optical Flow: Relations between Different Approaches and Some New Results,º Artificial Intelligence, vol. 33, no. 3, pp. 299-324, Nov. 1987.
- S. Geman and D. Geman, ªStochastic Relaxation, Gibbs Distribution, and the Bayesian Restoration of Images,º IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 6, no. 11, pp. 721-741, Nov. 1984.
- J. Konrad and E. Dubois, ªBayesian Estimation of Motion Vector Fields,º IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 14, no. 9, pp. 910- 927, Sept. 1992.
- C. Stiller, ªObject-Based Estimation of Dense Motion Fields,º IEEE Trans. Image Processing, vol. 6, no. 2, pp. 234-250, Feb. 1997.
- M.M. Chang, A.M. Tekalp, and M.I. Sezan, ªAn Algorithm for Simulta- neous Motion Estimation and Scene Segmentation,º Proc. IEEE Int'l Conf. Acoustics, Speech, and Signal Processing, Apr. 1994.
- P. Bouthemy and E. Francois, ªMotion Segmentation and Qualitative Dynamic Scene Analysis from an Image Sequence,º Int'l J. Computer Vision, vol. 10, no. 2, pp. 157-182, May 1993.
- I. Patras, E.A. Hendriks, and R.L. Lagendijk, ªVideo Segmentation by Map Labeling of Watershed Segments,º Techical Report ICT-00-01, Delft Univ. of Technology, 2000.
- R. Fablet, P. Bouthemy, and M. Gelgon, ªMoving Object Detection in Color Image Sequences Using Region-Level Graph Labeling,º Proc. IEEE Int'l Conf. Image Processing, Oct. 1999.
- N. Diehl, ªObject-Oriented Motion Estimation and Segmentation in Image Sequences,º Signal Processing: Image Comm., vol. 3, no. 1, pp. 23-56, Jan. 1991.
- F. Dufaux, F. Moscheni, and A. Lippman, ªSpatiotemporal Segmentation Based on Motion and Static Ssegmentation,º Proc. IEEE Int'l Conf. Image Processing, vol. 1, pp. 306-309, Oct. 1995.
- F. Moscheni, F. DuFaux, and M. Kunt, ªA New Two-Stage Global/Local Motion Estimation Based on a Background/Foreground Segmentation,º Proc. Int'l Conf. Acoustics, Speech, and Signal Processing, May 1995.
- J.Y.A. Wang and E.H. Adelson, ªRepresenting Moving Images with Layers,º IEEE Trans. Image Processing, vol. 3, no. 5, pp. 625-638, Sept. 1994.
- F. Moscheni, S. Bhattacharjee, and M. Kunt, ªSpatiotemporal Segmentation Based on Region Merging,º IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 9, pp. 897-915, Sept. 1998.
- D. Wang, ªUnsupervised Video Segmentation Based on Watersheds and Temporal Tracking,º IEEE Trans. Circuits and Systems for Video Technology, vol. 8, no. 5, pp. 539-546, Sept. 1995.
- N. Brady and N.E. O'Connor, ªObject Detection and Tracking Using an Em- Based Motion Estimation and Segmentation Framework,º Proc. IEEE Int'l Conf. Image Processing, p. 17A2, 1996.
- Y. Weiss and E.H. Adelson, ªA Unified Mixture Framework for Motion Segmentation: Incorporating Spatial Coherence and Estimating the Num- ber of Models,º Proc. IEEE Int'l Conf. Computer Vision and Pattern Recognition, pp. 321-326, 1996.
- J. Konrad and V.N. Dang, ªCoding-Oriented Video Segmentation Inspired by MRF Models,º Proc. Int'l Conf. Image Processing, vol. 1, pp. 909-912, 1996.
- M. Gelgon and P. Bouthemy, ªA Region-Level Graph Labeling Approach to Motion-Based Segmentation,º Proc. IEEE Int'l Conf. Computer Vision and Pattern Recognition, pp. 514-519, 1997.
- M. Gelgon and P. Bouthemy, ªA Region-Level Motion-Based Graph Representation and Labeling for Tracking a Spatial Image Partition,º Pattern Recognition, vol. 33, pp. 725-740, Apr. 2000.
- S. Beucher, ªWatersheds of Functions and Picture Segmentation,º Proc. IEEE Int'l Conf. Acoustics, Speech, and Signal Processing, pp. 1928-1931, May 1982.
- P. Shalembier and J. Serra, ªMorphological Multiscale Image Segmenta- tion,º Proc. SPIE Visual Comm. and Image Processing, vol. 1818, pp. 620-631, Nov. 1992.
- L. Vincent and P. Soille, ªWatersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations,º IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 13, no. 6, pp. 583-589, June 1991.
- S.Z. Li, Markov Random Field Modeling in Computer Vision. Springer-Verlag, 1995.
- E. Dubois and J. Konrad, ªEstimation of 2D Motion Fields from Image Sequences with Application to Video Coding,º Motion Analysis and Image Sequence Processing, M.I. Sezan and R.L. Lagendijk, eds., Kluwer Academic Publishers, pp. 53-87, 1993.
- J. Besag, ªOn the Statistical Analysis of Dirty Pictures,º J. Royal Statistical Soc., vol. 48, no. 3, pp. 259-302, 1986.
- J.M. Odobez and P. Bouthemy, ªRobust Multiresolution Estimation of Parametric Motion Models,º J. Visual Comm. and Image Representation, vol. 6, no. 4, pp. 348-365, Dec. 1995.
- J Rissanen, ªA Universal Prior for Integers and Estimation by Minimum Description Length,º The Annals of Statistics, vol. 11, no. 2, pp. 416-431, 1983.
- C.S. Wallace and D.M. Boulton, ªAn Information Measure for Classifica- tion,º Computing J., vol. 11, no. 2, pp. 185-195, 1968.