Academia.eduAcademia.edu

Outline

An n-Dimensional Generalization of the Rhombus Tiling

2001

Abstract

Several classic tilings, including rhombuses and dominoes, possess height functions which allow us to 1) prove ergodicity and polynomial mixing times for Markov chains based on local moves, 2) use coupling from the past to sample perfectly random tilings, 3) map the statistics of random tilings at large scales to physical models of random surfaces, and and 4) are related to the "arctic circle"' phenomenon.However, few examples are known for which this approach works in three or more dimensions.Here we show that the rhombus tiling can be generalized to n-dimensional tiles for any $n ≥ 3$. For each $n$, we show that a certain local move is ergodic, and conjecture that it has a mixing time of $O(L^{n+2} log L)$ on regions of size $L$. For $n=3$, the tiles are rhombohedra, and the local move consists of switching between two tilings of a rhombic dodecahedron.We use coupling from the past to sample random tilings of a large rhombic dodecahedron, and show that arctic regions...

References (52)

  1. D. Aldous, "Random walks on finite groups and rapidly mixing Markov chains." Séminaire de Prob- abilités XVII 1981/82, Springer Lecture Notes in Mathematics 986 243-297.
  2. H. van Beijeren, "Exactly solvable model for the roughening transition of a crystal surface." Phys. Rev. Lett. 38 (1977) 993-996.
  3. R. Berger, "The undecidability of the domino problem." Memoirs Amer. Math. Soc. 66 (1966) 1-72.
  4. H.W.J. Blöte and H.J. Hilhorst, "Roughening transitions and the zero-temperature triangular Ising antiferromagnet." J. Phys. A 15 (1982) L631-L637.
  5. J.K. Burton, Jr. and C.L. Henley, "A constrained Potts antiferromagnet model with an interface representation." J. Phys. A 30 (1997) 8385-8413.
  6. H. Cohn, R. Kenyon, and J. Propp, "A variational principle for domino tilings." J. Amer. Math. Soc. 14 (2001) 297-346.
  7. H. Cohn, M. Larsen, and J. Propp, "The shape of a typical boxed plane partition." New York J. Math. 4 (1998) 137-165.
  8. J.H. Conway and J.C. Lagarias, "Tilings with polyominoes and combinatorial group theory." J. Com- bin. Theory Ser. A 53 (1990) 183-206.
  9. N. Destainville, "Flip dynamics in octagonal rhombus tiling sets." Preprint cond-mat/0101413.
  10. N. Destainville, R. Mosseri, and F. Bailly, "Fixed-boundary octagonal random tilings: a combinato- rial approach." J. Stat. Phys. 102(1/2) (2001) 147-190.
  11. N. Destainville, R. Mosseri, and F. Bailly, "Configurational entropy of codimension-one tilings and directed membranes." J. Stat. Phys. 87 (1997) 697-.
  12. P. Diaconis and L. Saloff-Coste, "Comparison theorems for reversible Markov chains." Ann. Appl. Prob. 3(3) (1993) 696-730.
  13. S. Elnitsky, "Rhombic tilings of polygons and classes of reduced words in Coxeter groups." J. Com- bin. Theory 77 (1997) 193-221.
  14. M.E. Fisher, "Statistical mechanics of dimers on a plane lattice." Phys. Rev. 124 (1961) 1664-1672.
  15. M.E. Fisher and J. Stephenson, "Statistical mechanics of dimers on a plane lattice II: Dimer correla- tions and monomers." Phys. Rev. 132 (1963) 1411-1431.
  16. H.N.V. Temperley and M.E. Fisher, "Dimer problem in statistical mechanics-an exact result." Phil. Mag. 6 (1961) 1061-1063.
  17. C. Henley, "Relaxation time for a dimer covering with height representation." J. Stat. Phys. 89(3/4) (1997) 483-507.
  18. D.A. Huse and A.D. Rutenberg, "Classical antiferromagnets on the Kagomé lattice." Phys. Rev. B 45 (1992) 7536-7539.
  19. W. Jockusch, J. Propp, and P. Shor, "Random domino tilings and the arctic circle theorem." Preprint math.CO/9801068.
  20. P.W. Kasteleyn, "The statistics of dimers on a lattice, I: the number of dimer arrangements on a quadratic lattice." Physica 27 (1961) 1209-1225.
  21. C. Kenyon and R. Kenyon, "Tiling a polygon with rectangles." Proc. 33rd Symp. Foundations of Computer Science (1992) 610-619.
  22. R. Kenyon, "Tilings of polygons with parallelograms." Algorithmica 9 (1993) 382-397.
  23. R. Kenyon, "Dominos and the Gaussian free field." Preprint math-ph/0002027.
  24. R. Kenyon, "Local statistics of lattice dimers." Preprint math.CO/0105054.
  25. J. Kolafa, "Monte Carlo study of the three-state square Potts antiferromagnet." J. Phys. A: Math. Gen. 17 (1984) L777-L781.
  26. J. Kondev and C.L. Henley, "Four-coloring model on the square lattice: A critical ground state." Phys. Rev. B 52 (1995) 6628-6639.
  27. H.J.F. Knops, "Renormalization connection between the eight-vertex model and the Gaussian model." Ann. Phys. 128 (1981) 448-462.
  28. J.C. Lagarias and D.S. Romano, "A polynomial tiling problem of Thurston and its configurational entropy." J. Combin. Theory Ser. A 63 (1993) 338-358.
  29. L.S. Levitov, "Equivalence of the dimer resonating-valence-bond problem to the quantum roughen- ing problem." Phys. Rev. Lett. 64 (1990) 92-94.
  30. H. Lewis, "Complexity of solvable cases of the decision problem for predicate calculus." Proc. 19th Symp. on Foundations of Computer Science (1978) 35-47.
  31. M. Luby, D. Randall, and A. Sinclair, "Markov chain algorithms for planar lattice structures." Proc. 36th Symposium on Foundations of Computer Science (1995) 150-159.
  32. C. Moore, M.G. Nordahl, N. Minar, and C. Shalizi, "Vortex dynamics and entropic forces in antifer- romagnets and antiferromagnetic Potts models." Physical Review E 60 (1999) 5344-5351.
  33. C. Moore and M.E.J. Newman, "Height representation, critical exponents, and ergodicity in the four-state triangular Potts antiferromagnet." Journal of Statistical Physics 99 (2000) 661-690.
  34. C. Moore and I. Pak, "Ribbon tile invariants from signed area." To appear in Journal of Combinato- rial Theory Ser. A.
  35. C. Moore and J.M. Robson, "Hard tiling problems with simple tiles." Submitted to Discrete and Computational Geometry.
  36. C. Moore, "Height representation and long-range order in random trimer tilings of the square lattice." In preparation.
  37. M.E.J. Newman and G.T. Barkema, Monte Carlo Methods in Statistical Physics. Oxford University Press, Oxford (1999).
  38. B. Nienhuis, H.J. Hilhorst, and H.W.J. Blöte, "Triangular SOS models and cubic-crystal shapes." J. Phys. A 17 (1984) 3559-3581.
  39. R. Penrose, Bull. Inst. Math. and its Appl. 10 (1974) 266-.
  40. J. Propp and D. Wilson, "Exact Sampling with Coupled Markov Chains and Applications to Statis- tical Mechanics." Random Structures and Algorithms 9 (1996) 223-252.
  41. R. Raghavan, C.L. Henley, and S.L. Arouh, "New two-color dimer models with critical ground states." J. Stat. Phys. 86 (1997) 517-550.
  42. D. Randall and P. Tetali, "Analyzing Glauber dynamics by comparison of Markov chains." Journal of Mathematical Physics 41 (2000) 1598-1615.
  43. D. Randall and G. Yngve, "Random three-dimensional tilings of Aztec octahedra and tetrahedra: an extension of domino tilings." Proc. 11th Symp. on Discrete Algorithms (2000).
  44. D. Randall, personal communication.
  45. E. Rémila, "Tiling groups: new applications in the triangular lattice." Discrete and Combinatorial Geometry 20 (1998) 189-204.
  46. R.M. Robinson, "Undecidability and nonperiodicity of tilings of the plane." Inventiones Math. 12 (1971) 177-.
  47. W.P. Thurston, "Conway's tiling groups." Am. Math. Monthly 97 (1990) 757-773.
  48. J.-S. Wang, R.H. Swendsen, and R. Kotecký, "Antiferromagnetic Potts models," Phys. Rev. Lett. 63 (1989) 109-112, and "Three-state antiferromagnetic Potts models: A Monte Carlo study," Phys. Rev. B 42 (1990) 2465-2474.
  49. D. Wilson, Exact Sampling with Markov Chains. Ph.D. thesis, MIT Mathematics Department, 1996.
  50. D. Wilson, "Mixing times of lozenge tiling and card shuffling Markov chains." Preprint math.PR/0102193.
  51. C. Zeng and P.L. Leath, "Application of polynomial algorithms to a random elastic medium." cond-mat/9810154, and C. Zeng, P.L. Leath, and D.S. Fisher, "Absence of two-dimensional Bragg glasses." cond-mat/9807281.
  52. W. Zheng and S. Sachdev, "Sine-Gordon theory of the non-Néel phase of two-dimensional quantum antiferromagnets." Phys. Rev. B 40 (1989) 2704-2707.