On Learning Attacks in Probabilistic Abstract Argumentation
2016
https://doi.org/10.5555/2936924.2937021Abstract
Probabilistic argumentation combines the quantitative uncertainty accounted by probability theory with the qualitative uncertainty captured by argumentation. In this paper, we investigate the problem of learning the structure of an argumentative graph to account for (a distribution of) labellings of a set of arguments. We consider a general abstract framework, where the structure of arguments is left unspecified, and we focus on the grounded semantics. We present, with experimental insights, an anytime algorithm evaluating `on the fly' hypothetical attacks from the examination of an input stream of labellings.
References (22)
- P. Baroni, M. Caminada, and M. Giacomin. An introduction to argumentation semantics. Knowledge Engineering Review, 26(4):365-410, 2011.
- P. Dondio. Toward a computational analysis of probabilistic argumentation frameworks. Cybernetics and Systems, 45(3):254-278, 2014.
- P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell., 77(2):321-358, 1995.
- P. Dunne, W. Dvorák, T. Linsbichler, and S. Woltran. Characteristics of multiple viewpoints in abstract argumentation. Artif. Intell., 228:153-178, 2015.
- P. Dunne, A. Hunter, P. McBurney, S. Parsons, and M. Wooldridge. Weighted argument systems: Basic definitions, algorithms, and complexity results. Artif. Intell., 175(2):457-486, 2011.
- B. Fazzinga, S. Flesca, and F. Parisi. On the complexity of probabilistic abstract argumentation frameworks. ACM Trans. Comput. Logic, 16(3):22:1-22:39, June 2015.
- P. A. Flach. Rationality postulates for induction. In Proceedings of the 6th Conference on Theoretical Aspects of Rationality and Knowledge, pages 267-281.
- Morgan Kaufmann, 1996.
- P. Flajolet, D. Gardy, and L. Thimonier. Birthday paradox, coupon collectors, caching algorithms and self-organizing search. Discrete Appl. Math., 39(3):207-229, Nov. 1992.
- L. Getoor and B. Taskar. Introduction to Statistical Relational Learning (Adaptive Computation and Machine Learning). The MIT Press, 2007.
- B. Johnston and G. Governatori. Induction of defeasible logic theories in the legal domain. In Proceedings of the 9th International Conference on Artificial Intelligence and Law, pages 204-213. ACM, 2003.
- J. Kolodner. Case-based Reasoning. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1993.
- H. Li, N. Oren, and T. J. Norman. Probabilistic argumentation frameworks. In Revised Selected Papers of the 1st International Workshop on Theory and Applications of Formal Argumentation., Lecture Notes in Computer Science, pages 1-16. Springer, 2011.
- M. Mozina, J. Zabkar, and I. Bratko. Argument based machine learning. Artif. Intell., 171(10-15):922-937, 2007.
- S. Ontañón, P. Dellunde, L. Godo, and E. Plaza. A defeasible reasoning model of inductive concept learning from examples and communication. Artif. Intell., 193:129-148, Dec. 2012.
- S. Polberg and D. Doder. Probabilistic abstract dialectical frameworks. In Proceedings of the 14th European Conference on Logics in Artificial Intelligence, pages 591-599. Springer, 2014.
- H. Prakken and G. Sartor. Reasoning with precedents in a dialogue game. In Proceedings of the 6th International Conference on Artificial Intelligence and Law, ICAIL '97, pages 1-9, New York, NY, USA, 1997. ACM.
- L. D. Raedt, P. Frasconi, K. Kersting, and S. Muggleton, editors. Probabilistic Inductive Logic Programming -Theory and Applications. Springer Berlin Heidelberg, 2008.
- T. Rienstra, C. Sakama, and L. W. N. van der Torre. Persistence and monotony properties of argumentation semantics. In Revised Selected Papers of the 3rd International Workshop on Theory and Applications of Formal Argumentation, pages 211-225. Springer, 2015.
- R. Riveret, D. Korkinof, M. Draief, and J. V. Pitt. Probabilistic abstract argumentation: an investigation with boltzmann machines. Argument & Computation, 6(2):178-218, 2015.
- R. Riveret, J. Pitt, D. Korkinof, and M. Draief. Neuro-symbolic agents: Boltzmann machine and Probabilistic Abstract Argumentation with Sub-arguments. In Proceedings of the 14th International Joint Conference on Autonomous Agents & Multiagent Systems. IFAAMAS, 2015.
- M. Thimm. A probabilistic semantics for abstract argumentation. In Proceedings of the 20th European Conference on Artificial Intelligence, volume 242 of Frontiers in Artificial Intelligence and Applications, pages 750-755. IOS Press, 2012.