Academia.eduAcademia.edu

Outline

On the Wiener Index of Some Total Graphs

2017

https://doi.org/10.22457/APAM.V14N2A17

Abstract
sparkles

AI

The paper presents an investigation of the Wiener index for specific total graphs, particularly the total graph of bipartite and complete bipartite graphs. The Wiener index, a crucial graph invariant introduced by Harold Wiener, quantifies certain properties related to the structure of graphs, with significant applications in chemical graph theory. By deriving formulas for the Wiener index of several graph types, including total graphs and complete bipartite graphs, the study contributes to the understanding of graph properties and their implications.

References (22)

  1. M.M.Akbar Ali and S.Panayappan, Cycle multiplicity of total graph of C n , P n and K 1,n , International Journal of Engineering, Science and Technology, 2(2) (2010) 54-58.
  2. M.Behzad, A criterion for the planarity of the total graph of a graph, Math. Proc. Cambridge Philos. Soc., 63 (1967) 679-681.
  3. M.Behzad, The connectivity of total graphs, Bull. Aust. Math. Soc., 1 (1969) 175-181.
  4. M.Behzad, A characterization of total graphs, Proc. Amer. Math. Soc., 26(3) (1970) 383-389.
  5. M.Behzad and G.Chartrand, Total graphs and traversability, Proc. Edinb. Math. Soc., 15(2) (1966) 117-120.
  6. M.Behzad and H.Radjavi, The total group of a graph, Proc. Amer. Math. Soc., 19 (1968) 158-163.
  7. M.Behzad and H.Radjavi, Structure of regular total graphs, J. Lond. Math. Soc., 44 (1969) 433-436.
  8. A.A.Dobrynin and L.S.Mel'nikov, Wiener index for graphs and their line graphs, Diskretn. Anal. Issled. Oper. Ser. 2, 11(2004), 25-44, in Russian.
  9. A.A.Dobrynin and L.S.Mel'nikov, Trees, quadratic line graphs and the Wiener index, Croat. Chem Acta, 77 (2004) 477-480.
  10. A.A.Dobrynin and L.S.Mel'nikov, Wiener index for graphs and their line graphs with arbitrary large cyclomatic numbers, Appl. Math. Lett., 18 (2005) 307-312.
  11. A.A.Dobrynin and L.S.Mel'nikov, Wiener index, line graphs and the cyclomatic number, MATCH Commun. Math. Comput. Chem., 53 (2005) 209-214.
  12. A.A.Dobrynin, R.Entringer and I.Gutman, Wiener index of trees: Theory and applications, Acta Appl. Math., 66 (2001) 211-249.
  13. A.A.Dobrynin, I.Gutman, S.Klav z ( ar and P. Z ( igert, Wiener index of hexagonal systems, Acta Appl. Math., 72 (2002) 247-294.
  14. R.C.Entringer, Distance in graphs: Trees, J. Combin. Math. Combin. Comput., 24 (1997) 65-84.
  15. F.Gavril, A recognition algorithm for the total graphs, Networks, 8(2) (1978) 121-133.
  16. I.Gutman and E.Estrada, Topological indices based on the line graph of the molecular graph, J. Chem. Inf. Comput. Sci., 36 (1996) 541-543.
  17. I.Gutman, Y.N.Yeh, S.L.Lee and Y.L.Luo, Some recent results in the theory of the Wiener number, Indian J. Chem., 32A (1993) 651-661.
  18. I.Gutman, L.Popovic, B.K.Mishra, M.Kaunar, E.Estrada and N.Guevara, Application of line graphs in physical chemistry. Predicting surface tension of alkanes, J. Serb. Chem. Soc., 62 (1997) 1025-1029.
  19. K.Das, Algorithms to find wiener index of some graphs, Annals of Pure and Applied Mathematics, 7(1) (2014) 13-18.
  20. S.Kavitha and S.Lavanya, Fuzzy chromatic number of line, total and middle graphs of fuzzy complete graphs, Annals of Pure and Applied Mathematics, 8(2) (2014) 251-260.
  21. M.H.Khalifeh, H.Yousefi-Azari, A.R.Ashrafi and S.G.Wagner, Some new results on distance-based graph invariants, European J. Combin., 30(5) (2009) 1149-1163.
  22. K.Thilakam and A.Sumathi, Wiener index of a cycle in the context of some graph operations, Annals of Pure and Applied Mathematics, 5(2) (2014) 183-191.