Academia.eduAcademia.edu

Outline

Sample Path Behaviour of Wiener and Cauchy Processes

1998

Abstract

functions (cf. Révész (1990), pp. 33–34). Definition 1.1. The function ψ belongs to the upper-upper class of {V (t); t ≥ 0} (ψ(t) ∈ UUC(V (t))) if for almost all ω ∈ Ω there exists a t0 = t0(ω) > 0 such that V (t) < ψ(t) for all t > t0. Definition 1.2. The function ψ belongs to the upper-lower class of {V (t); t ≥ 0} (ψ(t) ∈ ULC(V (t))) if for almost all ω ∈ Ω there exists a sequence of positive numbers 0 < t1 = t1(ω) < t2 = t2(ω) < · · · with tn → ∞ such that V (ti) ≥ ψ(ti), i = 1, 2, . . . . Definition 1.3. The function ψ belongs to the lower-upper class of {V (t); t ≥ 0} (ψ(t) ∈ LUC(V (t))) if for almost all ω ∈ Ω there exists a sequence of positive numbers 0 < t1 = t1(ω) < t2 = t2(ω) < · · · with tn → ∞ such that V (ti) ≤ ψ(ti), i = 1, 2, . . . . Definition 1.4. The function ψ belongs to the lower-lower class of {V (t); t ≥ 0} (ψ(t) ∈ LLC(V (t))) if for almost all ω ∈ Ω there exists a t0 = t0(ω) > 0 such that V (t) > ψ(t) for all t > t0. Assum...

References (13)

  1. Bertoin, J. (1996) Lévy processes, Cambridge University Press, Cambridge.
  2. Chung, K. L. (1948) On the Maximum Partial Sums of Sequences of Independent Random Variables, Trans. Amer. Math. Soc., vol. 64, pp. 205-233.
  3. Csörgő, M., Shao, Q.-M., Szyszkowicz, B. (1991) A Note on Local and Global Func- tions of a Wiener Process and Some Rényi-type Statistics, Studia Sci. Math. Hungar., vol. 26, pp. 239-259.
  4. Darling, D. A. (1956) The Maximum of Sums of Stable Random Variables, Trans. Amer. Math. Soc., vol. 83, pp. 164-169.
  5. Fristedt, B. E. (1974) Sample Functions of Stochastic Processes with Stationary In- dependent Increments. In: Advances in Probability 3 (Eds.: Ney, P., Port, S.), pp. 241-396, Dekker, New York.
  6. Gruet, J.-C., Shi, Z. (1995) On the Spitzer and Chung Laws of the Iterated Logarithm for Brownian Motion, Séminaire de Probabilités XXIX, Lect. Notes in Math. 1613, Springer, pp. 237-247.
  7. Hirsch, W. M. (1965) A Strong Law for the Maximum Cumulative Sum of Independent Random Variables, Comm. Pure Appl. Math., vol. 18, pp. 109-217.
  8. Itô, K., McKean, H. P. Jr. (1965) Diffusion Processes and Their Sample Paths, Springer, Berlin.
  9. Kac, M., Pollard, H. (1950) The Distribution of the Maximum of Partial Sums of Independent Random Variables, Canadian J. Math., vol. 2, pp. 375-384.
  10. Karatzas, I., Shreve, S. E. (1988) Brownian Motion and Stochastic Calculus, Springer, New York.
  11. Keprta, S. (1997) Integral Tests for Brownian Motions and Some Related Processes, PhD thesis, Carleton University, Ottawa.
  12. Révész, P. (1990) Random Walk in Random and Non-random Environments, World Scientific.
  13. Spitzer, F. (1958) Some Theorems Concerning 2-dimensional Brownian Motion, Trans. Amer. Math. Soc., vol. 87, pp. 187-197.