Sample Path Behaviour of Wiener and Cauchy Processes
1998
Abstract
functions (cf. Révész (1990), pp. 33–34). Definition 1.1. The function ψ belongs to the upper-upper class of {V (t); t ≥ 0} (ψ(t) ∈ UUC(V (t))) if for almost all ω ∈ Ω there exists a t0 = t0(ω) > 0 such that V (t) < ψ(t) for all t > t0. Definition 1.2. The function ψ belongs to the upper-lower class of {V (t); t ≥ 0} (ψ(t) ∈ ULC(V (t))) if for almost all ω ∈ Ω there exists a sequence of positive numbers 0 < t1 = t1(ω) < t2 = t2(ω) < · · · with tn → ∞ such that V (ti) ≥ ψ(ti), i = 1, 2, . . . . Definition 1.3. The function ψ belongs to the lower-upper class of {V (t); t ≥ 0} (ψ(t) ∈ LUC(V (t))) if for almost all ω ∈ Ω there exists a sequence of positive numbers 0 < t1 = t1(ω) < t2 = t2(ω) < · · · with tn → ∞ such that V (ti) ≤ ψ(ti), i = 1, 2, . . . . Definition 1.4. The function ψ belongs to the lower-lower class of {V (t); t ≥ 0} (ψ(t) ∈ LLC(V (t))) if for almost all ω ∈ Ω there exists a t0 = t0(ω) > 0 such that V (t) > ψ(t) for all t > t0. Assum...
References (13)
- Bertoin, J. (1996) Lévy processes, Cambridge University Press, Cambridge.
- Chung, K. L. (1948) On the Maximum Partial Sums of Sequences of Independent Random Variables, Trans. Amer. Math. Soc., vol. 64, pp. 205-233.
- Csörgő, M., Shao, Q.-M., Szyszkowicz, B. (1991) A Note on Local and Global Func- tions of a Wiener Process and Some Rényi-type Statistics, Studia Sci. Math. Hungar., vol. 26, pp. 239-259.
- Darling, D. A. (1956) The Maximum of Sums of Stable Random Variables, Trans. Amer. Math. Soc., vol. 83, pp. 164-169.
- Fristedt, B. E. (1974) Sample Functions of Stochastic Processes with Stationary In- dependent Increments. In: Advances in Probability 3 (Eds.: Ney, P., Port, S.), pp. 241-396, Dekker, New York.
- Gruet, J.-C., Shi, Z. (1995) On the Spitzer and Chung Laws of the Iterated Logarithm for Brownian Motion, Séminaire de Probabilités XXIX, Lect. Notes in Math. 1613, Springer, pp. 237-247.
- Hirsch, W. M. (1965) A Strong Law for the Maximum Cumulative Sum of Independent Random Variables, Comm. Pure Appl. Math., vol. 18, pp. 109-217.
- Itô, K., McKean, H. P. Jr. (1965) Diffusion Processes and Their Sample Paths, Springer, Berlin.
- Kac, M., Pollard, H. (1950) The Distribution of the Maximum of Partial Sums of Independent Random Variables, Canadian J. Math., vol. 2, pp. 375-384.
- Karatzas, I., Shreve, S. E. (1988) Brownian Motion and Stochastic Calculus, Springer, New York.
- Keprta, S. (1997) Integral Tests for Brownian Motions and Some Related Processes, PhD thesis, Carleton University, Ottawa.
- Révész, P. (1990) Random Walk in Random and Non-random Environments, World Scientific.
- Spitzer, F. (1958) Some Theorems Concerning 2-dimensional Brownian Motion, Trans. Amer. Math. Soc., vol. 87, pp. 187-197.