Academia.eduAcademia.edu

Outline

Intelligent methods for embedded systems

Proceedings of the First Workshop on Intelligent …

Abstract
sparkles

AI

Intelligent methods are essential for designing embedded systems, which face unique challenges distinct from desktop programming. This paper explores various intelligent algorithms suited for these systems, emphasizing the significance of biologically inspired methods, multi-agent systems, and soft computing. It also discusses intelligent validation techniques for complex embedded systems and presents a case for hardware-software co-design to address resource limitations.

References (27)

  1. L. S. Smith. Biologically-Inspired Systems. Department of Computing Science and Mathematics, University of Stirling, Scotland, Scotland, UK, 1999. Lecture notes on Biologically Inspired Com- puting.
  2. E. C. Malthouse. Limitations of nonlinear PCA as performed with generic neural networks. IEEE Transactions on Neural Networks, 9(1):165-173, January 1998.
  3. N. Nilsson. Learning Machines. Morgan Kaufmann, San Mateo, 1965.
  4. D. D. Lee and H. S. Seung. Learning in intelligent embedded systems. In Proceedings of the Work- shop on Embedded Systems, Cambridge, MA, USA, March 1999.
  5. H. Kraut. Signalverarbeitung mittels eines Neuronalen Netzwerkes für einen Smart Sensor. Bache- lor's thesis, Technische Universität Wien, Institut für Technische Informatik, Vienna, Austria, 2003.
  6. T. Kohonen. Self-Organizing Maps. Springer, Heidelberg, 1995.
  7. X. Z. Gao and S. J. Ovaska. Soft computing methods in motor fault dianosis. Applied Soft Computing, 1:73-81, 2001.
  8. P. Atanassov, S. Haberl, and P. Puschner. Heuristic worst-case execution time analysis. In Proceed- ings of the 10th European Workshop on Dependable Computing, pages 109-114. Austrian Computer Society (OCG), May 1999.
  9. C. Scheidler, G. Heiner, R. Sasse, E. Fuchs, H. Kopetz, and C. Temple. Time-Triggered Architecture (TTA). Advances in Information Technologies: The Business Challenge, IOS Press, 1997.
  10. W. Pedrycz. Fuzzy Control and Fuzzy Systems. John Wiley & Sons, 1993.
  11. M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice. Knowledge Engineering Review, 10(2):115-152, 1995.
  12. H. S. Nwana and D. T. Ndumu. A perspective on software agents research. Knowledge Engineering Review, 14(2):1-18, 1999.
  13. The PABADIS consortium. Revolutionising Plant Automation The PABADIS Approach, 2002. Avail- able as white paper at http:/ /www.pabadis.org.
  14. Y. K. Penya, S. Mahlknecht, and P. Rössler. Lightweight agent platform for high-performance field- bus nodes. In Proceedings of the Work-in-Progress Session of the 4th IEEE International Workshop on Factory Communication Systems (WFCS'02), page 71, Västerås, Sweden, August 2002.
  15. C. Jones, M.-O. Killijian, H. Kopetz, E. Marsden, N. Moffat, D. Powell, B. Randell, A. Ro- manovsky, R. Stroud, and V. Issarny. Final version of the DSoS conceptual model. DSoS Project (IST-1999-11585) Deliverable CSDA1, October 2002. Available as Research Report 54/2002 at http:/ /www.vmars.tuwien.ac.at.
  16. C. E. McDowell and D. P. Helmbold. Debugging concurrent programs. ACM Computing Surveys, 21(4):593-622, December 1989.
  17. L. A. Zadeh. Applied soft computing -foreword. Applied Soft Computing, 1:1-2, 2001.
  18. D. M. Buede and E. L. Waltz. Benefits of soft sensors and probabilistic fusion. Signal and Data Processing of Small Targets, Proceedings of the SPIE, 1096:309-320, 1989.
  19. W. Elmenreich. Sensor Fusion in Time-Triggered Systems. PhD thesis, Technische Universität Wien, Institut für Technische Informatik, Vienna, Austria, 2002.
  20. K. L. McMillan. Symbolic Model Checking: An Approach to the State Explosion Problem. PhD thesis, School of Computer Science, Carnegie Mellon University, 1992.
  21. E. M. Clarke, Jr., O. Grumberg, and D. E. Long. Model checking and abstraction. ACM Transactions on Programming Languages and Systems, 16(5):1512-1542, 1994.
  22. E. A. Emerson and A. P. Sistla. Symmetry and model checking. Formal Methods in System Design, 9:105-131, 1995.
  23. K. S. Namjoshi. Ameliorating the State Space Explosion Problem. PhD thesis, University of Texas at Austin, 1998.
  24. E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
  25. S. Gnesi. Model checking of embedded systems. ERCIM News, (52), March 2003.
  26. M. T. Jensen. Improve robustness and flexibility of tardiness and total flow-time job shops using robustness measures. Applied Soft Computing, 1:35-52, 2001.
  27. A. Abraham and B. Nath. Designing optimal neuro-fuzzy systems for intelligent control. In Proceed- ings of the 6th International Conference on Control, Automation, Robotics, and Vision, December 2000.