Academia.eduAcademia.edu

Outline

Ontology inference using spatial and trajectory domain rules

Abstract

Capture devices give rise to a large scale spatiotemporal data describing moving object's trajectories. These devices use different technologies like global navigation satellite system (GNSS), wireless communication, radio-frequency identification (RFID), and sensors techniques. Although capture technologies differ, the captured data share common spatial and temporal features. Thus, relational database management systems (RDBMS) can be used to store and query the captured data. For this, RDBMS define spatial data types and spatial operations. Recent applications show that the solutions based on traditional data models are not sufficient to consider complex use cases that require advanced data models. A complex use case refers to data, but also to domain knowledge, to spatial reasoning or others. This article presents a sample application based on trajectories that require three types of independent data models: a domain data model, a semantic model and a spatial model. We analyze each of them and propose a modeling approach based on ontologies. This work introduces a high-level trajectory ontology and a generic spatial ontology. Also, we present our ontology matching approach for integrating the sample trajectory domain to both defined ontologies. This work has a special focus to the problem of defining ontology inference using business rules combined with spatial rules. We present an implementation framework for declarative and imperative parts of ontology rules using an RDF data store. We discuss various experiments based on spatial inference calculation. We discuss these results and present some solutions to improve the complexity of calculating spatial ontological inferences.

References (22)

  1. ISO/IEC 9075-2:1999. In Information Technology Database Languages SQL Part 2: Foundation (SQL/Foundation), 1999.
  2. ISO/IEC 13249-3:2002 FDIS. In Information technology Database languages SQL Multimedia and Application Packages Part 3: Spatial, 2002.
  3. R. Battle and D. Kolas. Enabling the geospatial semantic web with parliament and geosparql. Semantic Web, 3(4):355-370, 2012.
  4. D. Beddoe, P. Cotton, R. Uleman, S. Johnson, and J. R. Herring. OpenGIS Simple Features Specification For SQL. Technical report, OGC, 1999.
  5. E. Boeker. Environmental Science; Physical Principles and Applica- tions. New York: Wiley, 2001. Ref. GE80.H69 1993.
  6. A. Boulmakoul, L. Karim, and A. Lbath. Moving object trajectories meta-model and spatio-temporal queries. In International Journal of Database Management Systems (IJDMS), volume 4, pages 35-54, 2012.
  7. E. Clementini, P. D. Felice, and P. v. Oosterom. A small set of formal topological relationships suitable for end-user interaction. In Proceedings of the Third International Symposium on Advances in Spatial Databases, SSD '93, pages 277-295, London, UK, UK, 1993. Springer-Verlag.
  8. E. Clementini, J. Sharma, and M. J. Egenhofer. Modelling topolog- ical spatial relations: Strategies for query processing. Computers & Graphics, pages 815-822, 1994.
  9. M. J. Egenhofer and R. Franzosa. Point-set topological spatial relations. Number 5(2), pages 161-174, 1991.
  10. M. J. Egenhofer and J. Herring. A mathematical framework for the definition of topological relationships. pages 803-813, 1990.
  11. R. Güting and M. Schneider. Moving Objects Databases. Morgan Kaufmann, 2005.
  12. G. Hillairet, F. Bertrand, and J. Y. Lafaye. MDE for publishing data on the semantic web. In international workshop on Transformation and Weaving Ontologies and Model Driven Engineering (TWOMDE) at MODELS'08, 2008.
  13. Y. Hu, K. Janowicz, D. Carral, S. Scheider, W. Kuhn, G. Berg- Cross, P. Hitzler, M. Dean, and D. Kolas. A geo-ontology design pattern for semantic trajectories. In Spatial Information Theory, volume 8116 of Lecture Notes in Computer Science, pages 438-456. Springer International Publishing, 2013.
  14. F. Korn, S. Muthukrishnan, and Y. Zhu. Checks and balances: monitor- ing data quality problems in network traffic databases. In Proceedings of the 29th international conference on Very large data bases -Volume 29, VLDB '03, pages 536-547. VLDB Endowment, 2003.
  15. J. Lieberman, R. Singh, and C. Goad. W3C Geospatial ontologies - W3C incubator group, 2007.
  16. W. Mefteh. Approche ontologique pour la modelisation et le raison- nement sur les trajectoires. Prise en compte des aspects thematiques, temporels et saptiaux. PhD thesis, La Rochelle university, 2013.
  17. S. Sangheon, Pack Xuemin sherman, M. Senior, W. M. Jon, F. Life, and P. Jianping. Adaptive route optimization in hierarchical mobile IPv6 networks.
  18. D. Souripriya and S. Jagannathan. Database technologies for rdf. In Reasoning Web. Semantic Technologies for Information Systems, 5th International Summer School 2009, volume 5689 of Lecture Notes in Computer Science, pages 205-221. Springer, 2009.
  19. S. Spaccapietra, C. Parent, M. Damiani, J. Demacedo, F. Porto, and C. Vangenot. A conceptual view on trajectories. Data and Knowledge Engineering, pages 126-146, 2008.
  20. A. Vandecasteele and A. Napoli. An enhanced spatial reasoning ontology for maritime anomaly detection. In International Conference on System Of Systems Engineering -IEEE SOSE, GIS '06, pages 247- 252, 2012.
  21. R. Wannous, J. Malki, A. Bouju, and C. Vincent. Time integration in semantic trajectories using an ontological modelling approach. In New Trends in Databases and Information Systems, volume 185 of Advances in Intelligent Systems and Computing, pages 187-198. Springer Berlin Heidelberg, 2013.
  22. Z. Wu, G. Eadon, S. Das, E. I. Chong, V. Kolovski, M. Annamalai, and J. Srinivasan. Implementing an inference engine for rdfs/owl constructs and user-defined rules in oracle. In Proceedings of the 2008 IEEE 24th International Conference on Data Engineering, ICDE '08, pages 1239-1248, Washington, DC, USA, 2008. IEEE Computer Society.