Academia.eduAcademia.edu

Outline

Editorial: Cell Stress, Metabolic Reprogramming, and Cancer

Frontiers in Oncology

https://doi.org/10.3389/FONC.2018.00236

Abstract
sparkles

AI

This editorial introduces the Research Topic "Cell Stress, Metabolic Reprogramming, and Cancer," focusing on the critical role of mitochondrial function and energy metabolism in cancer progression. It summarizes contributions discussing the non-canonical roles of key proteins such as HIF-1α and ATM in metabolic reprogramming, the implications of mitochondrial dysfunction on cancer cell survival and metastasis, and highlights the emerging connections between inflammation and cancer metabolism. The editorial emphasizes the potential for these insights to lead to new therapeutic strategies and highlights the importance of continued research in this area.

References (15)

  1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell (2012) 144:646-74. doi:10.1016/j.cell.2011.02.013
  2. Picard M, Wallace DC, Burelle Y. The rise of mitochondria in medicine. Mitochondrion (2016) 30:105-16. doi:10.1016/j.mito.2016.07.003
  3. Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab (2016) 23:27-47. doi:10.1016/j.cmet.2015.12.006
  4. Vander Heiden MG, DeBerardinis RJ. Understanding the intersections between metabolism and cancer biology. Cell (2017) 168:657-69. doi:10.1016/j. cell.2016.12.039
  5. Vyas S, Zaganjor E, Haigis MC. Mitochondria and cancer. Cell (2016) 166:555-66. doi:10.1016/j.cell.2016.07.002
  6. Iommarini L, Porcelli AM, Gasparre G, Kurelac I. Non-canonical mecha- nisms regulating hypoxia-inducible factor 1 alpha in cancer. Front Oncol (2017) 7:286. doi:10.3389/fonc.2017.00286
  7. Dahl ES, Aird KM. Ataxia-Telangiectasia mutated modulation of carbon metabolism in cancer. Front Oncol (2017) 7:291. doi:10.3389/fonc.2017.00291
  8. Ždralević M, Marchiq I, Cunha de Padua MM, Parks SK, Pouysségur J. Metabolic plasiticy in cancers-distinct role of glycolytic enzymes GPI, LDHs or membrane transporters MCTs. Front Oncol (2017) 7:313. doi:10.3389/fonc.2017.00313
  9. Passarella S, Schurr A. l-Lactate transport and metabolism in mitochon- dria of Hep G2 cells-The Cori cycle revisited. Front Oncol (2018) 8:120. doi:10.3389/fonc.2018.00120
  10. Vučetić M, Cormerais Y, Parks SK, Pouysségur J. The central role of amino acids in cancer redox homeostasis: vulnerability points of the cancer redox code. Front Oncol (2017) 7:319. doi:10.3389/fonc.2017.00319
  11. Scalise M, Pochini L, Galluccio M, Console L, Indiveri C. Glutamine transport and mitochondrial metabolism in cancer cell growth. Front Oncol (2017) 7:306. doi:10.3389/fonc.2017.00306
  12. Guerra F, Arbini AA, Moro L. Mitochondria and cancer chemoresis- tance. Biochim Biophys Acta (2017) 1858:686-99. doi:10.1016/j.bbabio.2017. 01.012
  13. Guerra F, Guaragnella N, Arbini AA, Bucci C, Giannattasio S, Moro L. Mitochondrial dysfunction: a novel potential driver of epithelial-to-mes- enchymal transition in cancer. Front Oncol (2017) 7:295. doi:10.3389/ fonc.2017.00295
  14. Taniguchi K, Karin M. NF-kappaB, inflammation, immunity and can- cer: coming of age. Nat Rev Immunol (2018) 18:309-24. doi:10.1038/ nri.2017.142
  15. Kornberg MD, Bhargava P, Kim PM, Putluri V, Snowman AM, Putluri N, et al. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science (2018) 360:449-53. doi:10.1126/science.aan4665