Academia.eduAcademia.edu

Outline

A note on difference cordial graphs

2015

Abstract

Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , p} be a function. For each edge uv, assign the label |f (u)− f (v)|. f is called a difference cordial labeling if f is a one to one map and |ef (0)− ef (1)| ≤ 1 where ef (1) and ef (0) denote the number of edges labeled with 1 and not labeled with 1 respectively. A graph which admits a difference cordial labeling is called a difference cordial graph. In this paper we investigate the difference cordial labeling behaviour of K2 +mK1, K n + 2K2, Sunflower grpah, Lotus inside a circle, Pyramid, Permutation graphs.

References (20)

  1. I. Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, Ars combin., 23 (1987) 201-207.
  2. J. A. Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 18 (2012) #Ds6.
  3. F. Harary, Graph theory, Addision wesley, New Delhi (1969).
  4. Y. S. Ho, S. M. Lee, and S. C. Shee, Cordial labellings of unicyclic graphs and generalized Petersen graphs, Congr. Numer., 68 (1989) 109-122.
  5. S. M. Lee and A. Liu, A construction of cordial graphs from smaller cordial graphs, Ars Combin., 32 (1991) 209-214.
  6. R. Ponraj, S. Sathish Narayanan and R. Kala, Difference cordial labeling of graphs, Global Journal of Mathematical Sicences: Theory and Practical, 3(2013), 192-201.
  7. R. Ponraj and S. Sathish Narayanan, Further Results on Difference cordial labeling of corona graphs, The Journal of The Indian Academy of Mathematics, 35(@)(2013), 217-235.
  8. R. Ponraj, S. Sathish Narayanan and R. Kala, Difference cordial labeling of graphs obtained from double snakes, International Journal of Mathematics Research, 5(2013), 317-322.
  9. R. Ponraj and S. Sathish Narayanan, Difference cordiality of some graphs obtained from double alternate snake graphs, Global Journal of Mathematical Sciences: Theory and Practical, 5(2013), 167-175.
  10. R. Ponraj, S. Sathish Narayanan and R. Kala Difference cordiality of product related graphs, (communi- cated).
  11. A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (Internat. Symposium, Rome, July 1966), Gordon and Breach, N. Y. and Dunod Paris (1967) 349-355.
  12. M. A. Seoud and A. E. I. Abdel Maqsoud, On cordial and balanced labelings of graphs, J. Egyptian Math. Soc., 7(1999) 127-135.
  13. M. A. Seoud and A. E. I. Abdel Maqsoud, On 3-equitable and magic labelings, preprint.
  14. M. A. Seoud, A. T. Diab, and E. A. Elsahawi, On strongly-C harmonious, relatively prime, odd graceful and cordial graphs, Proc. Math. Phys. Soc. Egypt, No. 73 (1998) 33-55.
  15. S. K. Vaidya, G. Ghodasara, S. Srivastav, and V. Kaneria, Cordial labeling for two cycle related graphs, Math. Student, 76 (2007) 237-246.
  16. S. K. Vaidya, G. Ghodasara, S. Srivastav, and V. Kaneria, Some new cordial graphs, Internat. J. Scientific Computing, 2 (2008) 81-92.
  17. S. K. Vaidya, K. Kanani, S. Srivastav, and G. Ghodasara, Baracentric subdivision and cordial labeling of some cycle related graphs, Proceedings of the First International Conference on Emerging Technologies and Applications in Engineering, Technology and Sciences, (2008) 1081-1083.
  18. S. K. Vaidya, K. Kanani, P. Vihol, and N. Dani, Some cordial graphs in the context of barycentric subdi- vision, Int. J. Comtemp. Math. Sciences, 4 (2009) 1479-1492.
  19. S. K. Vaidya and P. L. Vihol, Cordial labeling for middle graph of some graphs, Elixir Discrete Math., 34C (2011) 2468-2475.
  20. M. Z. Youssef, Graph operations and cordiality, Ars Combin., 97 (2010) 161-174.