Academia.eduAcademia.edu

Outline

Wavelike statistics from pilot-wave dynamics in a circular corral

2013, Physical Review E

https://doi.org/10.1103/PHYSREVE.88.011001

Abstract

Bouncing droplets can self-propel laterally along the surface of a vibrated fluid bath by virtue of a resonant interaction with their own wave field. The resulting walking droplets exhibit features reminiscent of microscopic quantum particles. Here we present the results of an experimental investigation of droplets walking in a circular corral. We demonstrate that a coherent wavelike statistical behavior emerges from the complex underlying dynamics and that the probability distribution is prescribed by the Faraday wave mode of the corral. The statistical behavior of the walking droplets is demonstrated to be analogous to that of electrons in quantum corrals.

References (24)

  1. M. Faraday, Philos. Trans. R. Soc. London 121, 319 (1831).
  2. T. B. Benjamin and F. Ursell, Proc. R. Soc. London Ser. A 225, 505 (1954).
  3. J. Walker, Sci. Am. 238 (6), 151 (1978).
  4. Y. Couder, E. Fort, C.-H. Gautier, and A. Boudaoud, Phys. Rev. Lett. 94, 177801 (2005).
  5. J. Moláček and J. W. M. Bush, J. Fluid Mechanics 727, 582 (2013).
  6. S. Protière, A. Boudaoud, and Y. Couder, J. Fluid Mech. 554, 85 (2006).
  7. J. Moláček and J. W. M. Bush, J. Fluid Mechanics 727, 612 (2013).
  8. L. de Broglie, Ondes et Mouvements (Gautier Villars, Paris, 1926).
  9. A. Eddi, E. Sultan, J. Moukhtar, E. Fort, M. Rossi, and Y. Couder, J. Fluid Mech. 674, 433 (2011).
  10. Y. Couder and E. Fort, Phys. Rev. Lett. 97, 154101 (2006).
  11. A. Eddi, E. Fort, F. Moisy, and Y. Couder, Phys. Rev. Lett. 102, 240401 (2009).
  12. E. Fort, A. Eddi, A. Boudaoud, J. Moukhtar, and Y. Couder, Proc. Natl. Acad. Sci. 107, 17515 (2010).
  13. J. W. M. Bush, Proc. Natl. Acad. Sci. 107, 17455 (2010).
  14. A. Eddi, J. Moukhtar, S. Perrard, E. Fort, and Y. Couder, Phys. Rev. Lett. 108, 264503 (2012).
  15. See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevE.88.011001 for complete experimental meth- ods and movies of a walking droplet confined to a circular geometry.
  16. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).
  17. N. Bohr, Phys. Rev. 48, 696 (1935).
  18. M. F. Crommie, C. P. Lutz, and D. M. Eigler, Nature (London) 363, 524 (1993).
  19. M. F. Crommie, C. P. Lutz, and D. M. Eigler, Science 262, 218 (1993).
  20. G. A. Fiete and E. J. Heller, Rev. Mod. Phys. 75, 933 (2003).
  21. L. de Broglie, Ann. Fond. Louis de Broglie 12, 1 (1987).
  22. Y. Couder and E. Fort, J. Phys.: Conf. Ser. 361, 012001 (2012).
  23. D. Bohm, Phys. Rev. 85, 166 (1952).
  24. P. Holland, The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics (Cambridge University Press, Cambridge, 1993).