Academia.eduAcademia.edu

Outline

Post-Quench Entanglement and Fluctuations in the Haldane Model

2018

Abstract

Topological insulators are materials that behave like an insulator in the bulk but have conducting edge states. These edge states are topologically protected and exhibit unique properties. Studying the dynamics of these systems far-from equilibrium can provide information on the stability of these edge states and provide insight on the propagation of entanglement which is of interest in quantum information. In this thesis, I study the far-from-equilibrium dynamics of the Haldane model. Various quenches between different topological phases are performed, and the dynamics of both the entanglement and particle numbers are analyzed. Using a correlation matrix, the time evolution of the entanglement and charge fluctuations are calculated. The dynamics of the entanglement and charge fluctuations provides insight on the evolution of this system following a quench. The charge fluctuations allow us to probe the entanglement of these systems using a quantity that can be measured experimentall...

References (73)

  1. Subir Sachdev. Quantum phase transitions. Cambridge University Press, 2011.
  2. K v Klitzing, Gerhard Dorda, and Michael Pepper. New method for high- accuracy determination of the fine-structure constant based on quantized Hall resistance. Physical Review Letters, 45(6):494, 1980.
  3. Klaus von Klitzing. Developments in the quantum Hall effect. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and En- gineering Sciences, 363(1834):2203-2219, 2005.
  4. Zheng Wang, Yidong Chong, John D Joannopoulos, and Marin Soljačić. Ob- servation of unidirectional backscattering-immune topological electromagnetic states. Nature, 461(7265):772, 2009.
  5. Chetan Nayak, Steven H Simon, Ady Stern, Michael Freedman, and Sankar Das Sarma. Non-abelian anyons and topological quantum computation. Reviews of Modern Physics, 80(3):1083, 2008.
  6. Eddy Ardonne and Kareljan Schoutens. Wavefunctions for topological quantum registers. Annals of Physics, 322(1):201-235, 2007.
  7. Yi Wang, Dapeng Zhu, Yang Wu, Yumeng Yang, Jiawei Yu, Rajagopalan Ra- maswamy, Rahul Mishra, Shuyuan Shi, Mehrdad Elyasi, Kie-Leong Teo, et al. Room temperature magnetization switching in topological insulator-ferromagnet heterostructures by spin-orbit torques. Nature Communications, 8(1):1364, 2017.
  8. Guifre Vidal, José Ignacio Latorre, Enrique Rico, and Alexei Kitaev. Entangle- ment in quantum critical phenomena. Physical Review Letters, 90(22):227902, 2003.
  9. Jens Eisert, Mathis Friesdorf, and Christian Gogolin. Quantum many-body sys- tems out of equilibrium. Nature Physics, 11(2):124, 2015.
  10. L Landau. Theory of phase transformations. Phys. Z. Sowjetunion, 11(26), 1937.
  11. Klaus Von Klitzing. The quantized Hall effect. Reviews of Modern Physics, 58(3):519, 1986.
  12. Daniel C Tsui, Horst L Stormer, and Arthur C Gossard. Two-dimensional magne- totransport in the extreme quantum limit. Physical Review Letters, 48(22):1559, 1982.
  13. Xiao-Gang Wen, Frank Wilczek, and Anthony Zee. Chiral spin states and su- perconductivity. Physical Review B, 39(16):11413, 1989.
  14. Xiao-Gang Wen. Colloquium: Zoo of quantum-topological phases of matter. Reviews of Modern Physics, 89(4):041004, 2017.
  15. Frank Pollmann, Ari M Turner, Erez Berg, and Masaki Oshikawa. Entangle- ment spectrum of a topological phase in one dimension. Physical Review B, 81(6):064439, 2010.
  16. Philip W Anderson et al. More is different. Science, 177(4047):393-396, 1972.
  17. Robert B Laughlin. Why is emergence significant? https://www. closertotruth.com/interviews/2583. [Online; retrieved on September 1, 2018].
  18. Matthias Vojta. Quantum phase transitions. Reports on Progress in Physics, 66(12):2069, 2003.
  19. JM Fink, A Dombi, A Vukics, Andreas Wallraff, and P Domokos. Observa- tion of the photon-blockade breakdown phase transition. Physical Review X, 7(1):011012, 2017.
  20. M Zahid Hasan and Charles L Kane. Colloquium: topological insulators. Reviews of Modern Physics, 82(4):3045, 2010.
  21. Albert Einstein, Boris Podolsky, and Nathan Rosen. Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47(10):777, 1935.
  22. Erwin Schrödinger. Discussion of probability relations between separated sys- tems. In Mathematical Proceedings of the Cambridge Philosophical Society, vol- ume 31, pages 555-563. Cambridge University Press, 1935.
  23. Ryszard Horodecki, Pawe l Horodecki, Micha l Horodecki, and Karol Horodecki. Quantum entanglement. Reviews of modern physics, 81(2):865, 2009.
  24. EH Kim. Characterizing topological order in superconductors via entanglement. Journal of Physics: Condensed Matter, 26(20):205602, 2014.
  25. Ingo Peschel. Special review: Entanglement in solvable many-particle models. Brazilian Journal of Physics, 42(3-4):267-291, 2012.
  26. Ingo Peschel. Calculation of reduced density matrices from correlation functions. Journal of Physics A: Mathematical and General, 36(14):L205, 2003.
  27. Alfréd Rényi. On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, pages 547-561, Berkeley, Calif., 1961. University of California Press.
  28. Mukund Rangamani and Tadashi Takayanagi. Holographic entanglement en- tropy. In Holographic Entanglement Entropy, pages 35-47. Springer, 2017.
  29. Alexandru Petrescu, H Francis Song, Stephan Rachel, Zoran Ristivojevic, Chris- tian Flindt, Nicolas Laflorencie, Israel Klich, Nicolas Regnault, and Karyn Le Hur. Fluctuations and entanglement spectrum in quantum Hall states. Jour- nal of Statistical Mechanics: Theory and Experiment, 2014(10):P10005, 2014.
  30. Harkirat Singh, Tanmoy Chakraborty, D Das, HS Jeevan, Y Tokiwa, P Gegen- wart, and C Mitra. Experimental quantification of entanglement through heat capacity. New Journal of Physics, 15(11):113001, 2013.
  31. Časlav Brukner, Vlatko Vedral, and Anton Zeilinger. Crucial role of quantum entanglement in bulk properties of solids. Physical Review A, 73(1):012110, 2006.
  32. Israel Klich, Gil Refael, and Alessandro Silva. Measuring entanglement entropies in many-body systems. Physical Review A, 74(3):032306, 2006.
  33. Rajibul Islam, Ruichao Ma, Philipp M Preiss, M Eric Tai, Alexander Lukin, Matthew Rispoli, and Markus Greiner. Measuring entanglement entropy in a quantum many-body system. Nature, 528(7580):77, 2015.
  34. Pasquale Calabrese, Mihail Mintchev, and Ettore Vicari. Exact relations between particle fluctuations and entanglement in fermi gases. EPL (Europhysics Letters), 98(2):20003, 2012.
  35. Eytan Barouch, Barry M McCoy, and Max Dresden. Statistical mechanics of the XY model. I. Physical Review A, 2(3):1075, 1970.
  36. Juan Pablo Paz and Wojciech Hubert Zurek. Environment-induced decoherence and the transition from quantum to classical. In Fundamentals of Quantum Information, pages 77-148. Springer, 2002.
  37. Markus Greiner, Olaf Mandel, Tilman Esslinger, Theodor W Hänsch, and Im- manuel Bloch. Quantum phase transition from a superfluid to a mott insulator in a gas of ultracold atoms. Nature, 415(6867):39, 2002.
  38. Pasquale Calabrese and John Cardy. Time dependence of correlation functions following a quantum quench. Physical review letters, 96(13):136801, 2006.
  39. Spyros Sotiriadis and John Cardy. Quantum quench in interacting field theory: a self-consistent approximation. Physical Review B, 81(13):134305, 2010.
  40. Isaac Chuang, Ruth Durrer, Neil Turok, and Bernard Yurke. Cosmology in the laboratory: Defect dynamics in liquid crystals. Science, 251(4999):1336-1342, 1991.
  41. A Maniv, E Polturak, and G Koren. Observation of magnetic flux generated spontaneously during a rapid quench of superconducting films. Physical review letters, 91(19):197001, 2003.
  42. DE Chang, V Gritsev, G Morigi, V Vuletić, MD Lukin, and EA Demler. Crys- tallization of strongly interacting photons in a nonlinear optical fibre. Nature Physics, 4(11):884, 2008.
  43. Anatoli Polkovnikov, Krishnendu Sengupta, Alessandro Silva, and Mukund Ven- galattore. Colloquium: Nonequilibrium dynamics of closed interacting quantum systems. Reviews of Modern Physics, 83(3):863, 2011.
  44. Claudia De Grandi, Vladimir Gritsev, and Anatoli Polkovnikov. Quench dynam- ics near a quantum critical point. Physical Review B, 81(1):012303, 2010.
  45. John Cardy. Measuring entanglement using quantum quenches. Physical review letters, 106(15):150404, 2011.
  46. Mikio Nakahara. Geometry, topology and physics. CRC Press, 2003.
  47. Theodore Frankel. The geometry of physics: an introduction. Cambridge Uni- versity Press, 2011.
  48. Andrew Pressley. The Gauss-Bonnet theorem, pages 335-377. Springer, 2010.
  49. Neil W. Ashcroft and N. David Mermin. Solid state physics. Brooks/Cole Thom- son Learning, 2012.
  50. Klaus von Klitzing. Quantum Hall effect: Discovery and application. 2017.
  51. Lev D. Landau and Lifsic Evgenij M. Course of theoretical physics. non- relativistic theory. Butterworth-Heinemann, 2005.
  52. David Tong. Lectures on the quantum Hall effect. arXiv preprint arXiv:1606.06687, 2016.
  53. David J Thouless, Mahito Kohmoto, M Peter Nightingale, and Md den Nijs. Quantized Hall conductance in a two-dimensional periodic potential. Physical Review Letters, 49(6):405, 1982.
  54. Barry Simon. Holonomy, the quantum adiabatic theorem, and berry's phase. Physical Review Letters, 51(24):2167, 1983.
  55. M Zahid Hasan and Charles L Kane. Colloquium: topological insulators. Reviews of Modern Physics, 82(4):3045, 2010.
  56. Michael Victor Berry. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A, 392(1802):45-57, 1984.
  57. F Duncan M Haldane. Model for a quantum Hall effect without landau levels: Condensed-matter realization of the" parity anomaly". Physical Review Letters, 61(18):2015, 1988.
  58. Chao-Xing Liu, Shou-Cheng Zhang, and Xiao-Liang Qi. The quantum anoma- lous Hall effect: Theory and experiment. Annual Review of Condensed Matter Physics, 7:301-321, 2016.
  59. B Andrei Bernevig and Taylor L Hughes. Topological insulators and topological superconductors. Princeton university press, 2013.
  60. Nitin Samarth. Topological spintronics. In Device Research Conference (DRC), 2016 74th Annual, pages 1-1. IEEE, 2016.
  61. Cheng He, Xu Ni, Hao Ge, Xiao-Chen Sun, Yan-Bin Chen, Ming-Hui Lu, Xiao- Ping Liu, and Yan-Feng Chen. Acoustic topological insulator and robust one-way sound transport. Nature Physics, 12(12):1124, 2016.
  62. Ling Lu, John D Joannopoulos, and Marin Soljačić. Topological photonics. Na- ture Photonics, 8(11):821, 2014.
  63. Hongki Min, Giovanni Borghi, Marco Polini, and Allan H MacDonald. Pseu- dospin magnetism in graphene. Physical Review B, 77(4):041407, 2008.
  64. Xiao-Liang Qi, Taylor L Hughes, and Shou-Cheng Zhang. Topological field the- ory of time-reversal invariant insulators. Physical Review B, 78(19):195424, 2008.
  65. Wen-Long You. The scaling of entanglement entropy in a honeycomb lattice on a torus. Journal of Physics A: Mathematical and Theoretical, 47(25):255301, 2014.
  66. Philippe Francesco, Pierre Mathieu, and David Sénéchal. Conformal field theory. Springer Science & Business Media, 2012.
  67. Pasquale Calabrese and John Cardy. Entanglement entropy and conformal field theory. Journal of Physics A: Mathematical and Theoretical, 42(50):504005, 2009.
  68. Israel Klich and Leonid Levitov. Quantum noise as an entanglement meter. Physical Review Letters, 102(10):100502, 2009.
  69. Maurizio Fagotti and Pasquale Calabrese. Evolution of entanglement entropy following a quantum quench: Analytic results for the x y chain in a transverse magnetic field. Physical Review A, 78(1):010306, 2008.
  70. Viktor Eisler and Ingo Peschel. Entanglement in a periodic quench. Annalen der Physik, 17(6):410-423, 2008.
  71. Gordon Baym. Lectures on quantum mechanics. CRC Press, 2018.
  72. Michel Gaudin. Une démonstration simplifiée du théoreme de wick en mécanique statistique. Nuclear Physics, 15:89-91, 1960.
  73. Leandro O Nascimento. Introduction to topological phases and electronic in- teractions in (2+ 1) dimensions. Brazilian Journal of Physics, 47(2):215-230, 2017.