Academia.eduAcademia.edu

Outline

Sensitive Ant Algorithm for Edge Detection in Medical Images

Applied Sciences

https://doi.org/10.3390/APP112311303

Abstract

Nowadays, reliable medical diagnostics from computed tomography (CT) and X-rays can be obtained by using a large number of image edge detection methods. One technique with a high potential to improve the edge detection of images is ant colony optimization (ACO). In order to increase both the quality and the stability of image edge detection, a vector called pheromone sensitivity level, PSL, was used within ACO. Each ant in the algorithm has one assigned element from PSL, representing the ant’s sensibility to the artificial pheromone. A matrix of artificial pheromone with the edge information of the image is built during the process. Demi-contractions in terms of the mathematical admissible perturbation are also used in order to obtain feasible results. In order to enhance the edge results, post-processing with the DeNoise convolutional neural network (DnCNN) was performed. When compared with Canny edge detection and similar techniques, the sensitive ACO model was found to obtain ove...

References (38)

  1. Dorigo, M.; Stützle, T. Ant Colony Optimization; MIT Press: Cambridge, MA, USA, 2004.
  2. Marginean, A.N.; Muntean, D.D.; Muntean, G.A.; Priscu, A.; Groza, A.; Slavescu, R.R.; Pintea, C.M. Reliable learning with PDE-based CNNs and dense nets for detecting COVID-19, pneumonia, and tuberculosis from chest X-ray images. Mathematics 2021, 9, 434. [CrossRef]
  3. Chattopadhyay, S.; Dey, A.; Singh, P.K.; Geem, Z.W.; Sarkar, R. Covid-19 Detection by Optimizing Deep Residual Features with Improved Clustering-Based Golden Ratio Optimizer. Diagnostics 2021, 11, 315. [CrossRef] [PubMed]
  4. Castiglione, A.; Vijayakumar, P.; Nappi, M.; Sadiq, S.; Umer, M. COVID-19: Automatic Detection of the Novel Coronavirus Disease From CT Images Using an Optimized Convolutional Neural Network. IEEE Trans. Ind. Inform. 2021, 17, 6480-6488.
  5. Voβ, S.; Martello, S.I.H.; Roucairol, C. (Eds.) Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization; Publisher: Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012.
  6. Voβ, S. Meta-heuristics: The state of the art. In Workshop on Local Search for Planning and Scheduling; Springer: Berlin/Heidelberg, Germany, 2000; pp. 1-23.
  7. Liantoni, F.; Rozi, N.F.; Indriyani, T.; Rahmawati, W.M.; Hapsari, R.K. Gradient based ant spread modification on ant colony optimization method for retinal blood vessel edge detection. Iop Conf. Ser. Mater. Sci. Eng. 2021, 1010, 012021. [CrossRef]
  8. Li, J.; An, X. Efficient Filtering for Edge Extraction under Perspective Effect. Appl. Sci. 2021, 11, 8558. [CrossRef]
  9. Crisan, G.C.; Nechita, E.; Palade, V. Ant-based system analysis on the traveling salesman problem under real-world settings. In Combinations of Intelligent Methods and Applications; Springer: Cham, Switzerland, 2016; pp. 39-59.
  10. Paprocka, I.; Krenczyk, D.; Burduk, A. The Method of Production Scheduling with Uncertainties Using the Ants Colony Optimisation. Appl. Sci. 2021, 11, 171. [CrossRef]
  11. Matei, O.; Rudolf, E.; Pintea, C.M. Selective Survey: Most Efficient Models and Solvers for Integrative Multimodal Transport. Informatica 2021, 32, 371-396. [CrossRef]
  12. Vescan, A.; Pintea, C.M.; Pop, P.C. Test Case Prioritization-ANT Algorithm with Faults Severity. Logic J. IGPL 2020, 29, jzaa061. [CrossRef]
  13. Pintea, C.-M.; Pop, P.C. Sensor networks security based on sensitive robots agents. A conceptual model. Adv. Intell. Syst. Comput. 2013 189, 47-56. [CrossRef]
  14. Pintea, C.-M.; Pop, P.C. Sensitive Ants for Denial Jamming Attack on Wireless Sensor Network. Adv. Intell. Soft Comput. 2014, 239, 409-418. [CrossRef]
  15. Canny, J. A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-8, 679-698. [CrossRef]
  16. Zhang, Z.; Liu, Y.; Liu, T.; Li, Y.; Ye, W. Edge Detection Algorithm of a Symmetric Difference Kernel SAR. Image Based on the GAN Network Model. Symmetry 2019, 11, 557. [CrossRef]
  17. Pintea, C.-M.; Ticala, C. Medical image processing: A brief survey and a new theoretical hybrid ACO model. In Combinations of Intelligent Methods and Applications. Smart Innovation, Systems and Technologies; Springer: Cham, Switzerland, 2016; Volume 46, pp. 117-134. [CrossRef]
  18. Ticala, C.; Zelina, I.; Pintea, C.-M. Admissible Perturbation of Demicontractive Operators within Ant Algorithms for Medical Images Edge Detection. Mathematics 2020, 8, 1040. [CrossRef]
  19. Rus, I.A. An abstract point of view on iterative approximation of fixed points. Fixed Point Theory 2012, 33, 179-192.
  20. Berinde, V.; Ticala, C. Enhancing Ant-Based Algorithms for Medical Image Edge Detection by Admissible Perturbations of Demicontractive Mappings. Symmetry 2021, 13, 885. [CrossRef]
  21. Ticala, C. A weak convergence theorem for a Krasnoselskij type fixed point iterative method in Hilbert spaces using an admissible perturbation. Sci. Stud. Res. 2015, 25, 243-252.
  22. Tian, J.; Yu, W.; Xie, S. An ant colony optimization algorithm for image edge detection. In Proceedings of the 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), Hong Kong, China, 1-6 June 2008; pp. 751-756.
  23. Ticala, C.; Zelina, I. New ant colony optimization algorithm in medical images edge detection. Creat. Math. Inf. 2020, 29, 101-108.
  24. Pintea, C.M.; Chira, C.; Dumitrescu, D.; Pop, P.C. A sensitive metaheuristic for solving a large optimization problem. Lect. Notes Comput. Sci. 2008, 4910, 551-559. [CrossRef]
  25. Chira, C.; Dumitrescu, D.; Pintea, C.M. Learning sensitive stigmergic agents for solving complex problems. Comput. Inform. 2010, 29, 337-356.
  26. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62-66. [CrossRef]
  27. Kanchi-Tian, J. Image Edge Detection Using Ant Colony Optimization Version 1.2.0.0; MATLAB Central File Exchange; University of Science & Technology: Wuhan, China, 2011.
  28. Edge Function. MATLAB Central File Exchange. Available online: https://www.mathworks.com/help/images/ref/edge.html (accessed on 5 August 2021).
  29. X-ray Hand. Vista Medical Pack. License: Free for Non Commercial Use. p. 236487. Available online: https://www.iconspedia. com/ (accessed on 5 August 2021).
  30. Head CT. Online Medical Free Image. Available online: http://www.libpng.org/pub/png/pngvrml/ct2.9-128x128.png (accessed on 5 August 2021).
  31. Denoise Image Using Deep Neural Network. MATLAB Central File Exchange. Available online: https://www.mathworks.com/ help/images/ref/denoiseimage.html (accessed on 5 August 2021).
  32. Kumar, S.; Upadhyay, A.K.; Dubey, P.; Varshney, S. Comparative analysis for Edge Detection Techniques. In Proceedings of the 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), Greater Noida, India, 19-20 February 2021; pp. 675-681.
  33. Avram, A.; Matei, O.; Pintea, C.; Anton, C. Innovative Platform for Designing Hybrid Collaborative & Context-Aware Data Mining Scenarios. Mathematics 2020, 8, 684. [CrossRef]
  34. Pintea, C.M.; Matei, O.; Ramadan, R.A.; Pavone, M.; Niazi, M.; Azar, A.T. A Fuzzy Approach of Sensitivity for Multiple Colonies on Ant Colony Optimization. Soft Comput. Appl. 2016, 634, 87-95. [CrossRef]
  35. Ahn, E.; Kim, J.; Bi, L.; Kumar, A.; Li, C.; Fulham, M.; Feng, D.D. Saliency-Based Lesion Segmentation via Background Detection in Dermoscopic Images. IEEE J. Biomed. Health Inform. 2017, 21, 1685-1693. [CrossRef] [PubMed]
  36. Matei, O. Defining an ontology for the radiograph images segmentation. In Proceedings of the 9th International Conference on Development and Application Systems, Suceava, Romania, 22-24 May 2008; pp. 266-271.
  37. Abd, E.M.; Ewees, A.A.; Ibrahim, R.A.; Lu, S. Opposition-based moth-flame optimization improved by differential evolution for feature selection. Math. Comput. Simul. 2020, 168, 48-75.
  38. Holzinger, A.; Plass, M.; Kickmeier-Rust, M.; Holzinger, K.; Crişan, G.C.; Pintea, C.M.; Palade, V. Interactive machine learning: Experimental evidence for the human in the algorithmic loop: A case study on Ant Colony Optimization. Appl. Intell. 2019, 49, 2401-2414. [CrossRef]