Academia.eduAcademia.edu

Outline

Preference queries over taxonomic domains

Proceedings of the VLDB Endowment

https://doi.org/10.14778/3467861.3467874

Abstract

When composing multiple preferences characterizing the most suitable results for a user, several issues may arise. Indeed, preferences can be partially contradictory, suffer from a mismatch with the level of detail of the actual data, and even lack natural properties such as transitivity. In this paper we formally investigate the problem of retrieving the best results complying with multiple preferences expressed in a logic-based language. Data are stored in relational tables with taxonomic domains, which allow the specification of preferences also over values that are more generic than those in the database. In this framework, we introduce two operators that rewrite preferences for enforcing the important properties of transitivity, which guarantees soundness of the result, and specificity, which solves all conflicts among preferences. Although, as we show, these two properties cannot be fully achieved together, we use our operators to identify the only two alternatives that ensure...

References (28)

  1. Ilaria Bartolini, Paolo Ciaccia, and Marco Patella. 2008. Efficient sort-based skyline evaluation. ACM Trans. Database Syst. 33, 4 (2008), 31:1-31:49. https: //doi.org/10.1145/1412331.1412343
  2. Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. 2001. The Skyline Operator. In Proceedings of the 17th International Conference on Data Engineering, April 2-6, 2001, Heidelberg, Germany. 421-430. https://doi.org/10.1109/ICDE.2001. 914855
  3. Federica Cena, Silvia Likavec, and Francesco Osborne. 2013. Anisotropic propa- gation of user interests in ontology-based user models. Inf. Sci. 250 (2013), 40-60. https://doi.org/10.1016/j.ins.2013.07.006
  4. Gil Chamiel and Maurice Pagnucco. 2008. Exploiting Ontological Structure for Complex Preference Assembly. In AI 2008: Advances in Artificial Intelli- gence, 21st Australasian Joint Conference on Artificial Intelligence, Auckland, New Zealand, December 1-5, 2008. Proceedings (Lecture Notes in Computer Sci- ence), Wayne Wobcke and Mengjie Zhang (Eds.), Vol. 5360. Springer, 86-92. https://doi.org/10.1007/978-3-540-89378-3_9
  5. Chee Yong Chan, H. V. Jagadish, Kian-Lee Tan, Anthony K. H. Tung, and Zhenjie Zhang. 2006. Finding k-dominant skylines in high dimensional space. In Pro- ceedings of the ACM SIGMOD International Conference on Management of Data, Chicago, Illinois, USA, June 27-29, 2006, Surajit Chaudhuri, Vagelis Hristidis, and Neoklis Polyzotis (Eds.). ACM, 503-514. https://doi.org/10.1145/1142473.1142530
  6. Jan Chomicki. 2003. Preference formulas in relational queries. ACM Trans. Database Syst. 28, 4 (2003), 427-466. https://doi.org/10.1145/958942.958946
  7. Jan Chomicki, Parke Godfrey, Jarek Gryz, and Dongming Liang. 2003. Sky- line with Presorting. In Proceedings of the 19th International Conference on Data Engineering, March 5-8, 2003, Bangalore, India, Umeshwar Dayal, Krithi Ra- mamritham, and T. M. Vijayaraman (Eds.). IEEE Computer Society, 717-719. https://doi.org/10.1109/ICDE.2003.1260846
  8. Paolo Ciaccia, Davide Martinenghi, and Riccardo Torlone. 2019. Finding Pre- ferred Objects with Taxonomies. In Conceptual Modeling -38th International Conference, ER 2019, Salvador, Brazil, November 4-7, 2019, Proceedings (Lecture Notes in Computer Science), Alberto H. F. Laender, Barbara Pernici, Ee-Peng Lim, and José Palazzo M. de Oliveira (Eds.), Vol. 11788. Springer, 397-411. https://doi.org/10.1007/978-3-030-33223-5_33
  9. Paolo Ciaccia, Davide Martinenghi, and Riccardo Torlone. 2020. Foundations of Context-aware Preference Propagation. J. ACM 67, 1 (2020), 4:1-4:43. https: //doi.org/10.1145/3375713
  10. Periklis Georgiadis, Ioannis Kapantaidakis, Vassilis Christophides, Elhadji Ma- madou Nguer, and Nicolas Spyratos. 2008. Efficient Rewriting Algorithms for Preference Queries. In Proceedings of the 24th International Conference on Data Engineering, ICDE 2008, April 7-12, 2008, Cancún, Mexico, Gustavo Alonso, José A. Blakeley, and Arbee L. P. Chen (Eds.). IEEE Computer Society, 1101-1110. https://doi.org/10.1109/ICDE.2008.4497519
  11. Parke Godfrey, Ryan Shipley, and Jarek Gryz. 2007. Algorithms and analyses for maximal vector computation. VLDB J. 16, 1 (2007), 5-28. https://doi.org/10.1007/ s00778-006-0029-7
  12. Matteo Golfarelli, Stefano Rizzi, and Paolo Biondi. 2011. myOLAP: An Approach to Express and Evaluate OLAP Preferences. IEEE Trans. Knowl. Data Eng. 23, 7 (2011), 1050-1064. https://doi.org/10.1109/TKDE.2010.196
  13. John F. Horty. 1994. Some Direct Theories of Nonmonotonic Inheritance. In Handbook of Logic in Artificial Intelligence and Logic Programming (Vol. 3): Non- monotonic Reasoning and Uncertain Reasoning. Oxford University Press, Inc., USA, 111-187.
  14. Ruoming Jin, Yang Xiang, Ning Ruan, and Haixun Wang. 2008. Efficiently an- swering reachability queries on very large directed graphs. In Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, Jason Tsong-Li Wang (Ed.). ACM, 595-608. https://doi.org/10.1145/1376616.1376677
  15. Saikishore Kalloori, Tianyu Li, and Francesco Ricci. 2019. Item Recommendation by Combining Relative and Absolute Feedback Data. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2019, Paris, France, July 21-25, 2019, Benjamin Piwowarski, Max Chevalier, Éric Gaussier, Yoelle Maarek, Jian-Yun Nie, and Falk Scholer (Eds.). ACM, 933-936. https://doi.org/10.1145/3331184.3331295
  16. Saikishore Kalloori, Francesco Ricci, and Rosella Gennari. 2018. Eliciting pairwise preferences in recommender systems. In Proceedings of the 12th ACM Conference on Recommender Systems, RecSys 2018, Vancouver, BC, Canada, October 2-7, 2018, Sole Pera, Michael D. Ekstrand, Xavier Amatriain, and John O'Donovan (Eds.). ACM, 329-337. https://doi.org/10.1145/3240323.3240364
  17. Werner Kießling. 2002. Foundations of Preferences in Database Systems. In VLDB 2002, Proceedings of 28th International Conference on Very Large Data Bases, August 20-23, 2002, Hong Kong, China. 311-322. http://www.vldb.org/conf/2002/ S09P04.pdf
  18. Georgia Koutrika and Yannis E. Ioannidis. 2004. Personalization of Queries in Database Systems. In Proceedings of the 20th International Conference on Data Engineering, ICDE 2004, 30 March -2 April 2004, Boston, MA, USA. 597-608. https: //doi.org/10.1109/ICDE.2004.1320030
  19. G.S. Linoff and M.J.A. Berry. 2001. Mining the web: Transforming Customer Data into Customer Value. John Wiley & Sons, New York.
  20. Thomas Lukasiewicz, Maria Vanina Martinez, and Gerardo Ignacio Simari. 2013. Preference-Based Query Answering in Datalog+/-Ontologies. In IJCAI 2013, Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, China, August 3-9, 2013, Francesca Rossi (Ed.). IJCAI/AAAI, 1017-1023. http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6505
  21. Thomas Lukasiewicz, Maria Vanina Martinez, Gerardo I. Simari, and Oana Tifrea- Marciuska. 2015. Preference-Based Query Answering in Probabilistic Datalog+/- Ontologies. J. Data Semant. 4, 2 (2015), 81-101. https://doi.org/10.1007/s13740- 014-0040-x
  22. Davide Martinenghi and Riccardo Torlone. 2014. Taxonomy-based relaxation of query answering in relational databases. VLDB J. 23, 5 (2014), 747-769. https: //doi.org/10.1007/s00778-013-0350-x
  23. Miriam Martínez-García, Aïda Valls, and Antonio Moreno. 2019. Inferring prefer- ences in ontology-based recommender systems using WOWA. J. Intell. Inf. Syst. 52, 2 (2019), 393-423. https://doi.org/10.1007/s10844-018-0532-5
  24. Francesco Ricci, Lior Rokach, and Bracha Shapira. 2011. Introduction to Rec- ommender Systems Handbook. In Recommender Systems Handbook, Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor (Eds.). Springer, 1-35. https://doi.org/10.1007/978-0-387-85820-3_1
  25. Kostas Stefanidis, Georgia Koutrika, and Evaggelia Pitoura. 2011. A survey on representation, composition and application of preferences in database systems. ACM Trans. Database Syst. 36, 3 (2011), 19:1-19:45. https://doi.org/10.1145/ 2000824.2000829
  26. Yannis Theoharis, George Georgakopoulos, and Vassilis Christophides. 2012. PoweRGen: A power-law based generator of RDFS schemas. Inf. Syst. 37, 4 (2012), 306-319. https://doi.org/10.1016/j.is.2011.09.005
  27. Yannis Theoharis, Yannis Tzitzikas, Dimitris Kotzinos, and Vassilis Christophides. 2008. On Graph Features of Semantic Web Schemas. IEEE Trans. Knowl. Data Eng. 20, 5 (2008), 692-702. https://doi.org/10.1109/TKDE.2007.190735
  28. Guohui Xiao, Diego Calvanese, Roman Kontchakov, Domenico Lembo, Antonella Poggi, Riccardo Rosati, and Michael Zakharyaschev. 2018. Ontology-Based Data Access: A Survey. In Proceedings of the Twenty-Seventh International Joint Con- ference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, Jérôme Lang (Ed.). ijcai.org, 5511-5519. https://doi.org/10.24963/ijcai.2018/777