An application of OWA operators in fuzzy business diagnosis
2016, Applied Soft Computing
https://doi.org/10.1016/J.ASOC.2016.06.026Abstract
The paper aims to develop an adjustment index based on OWA operators to enrich the results of diagnostic fuzzy models of business failure. A proposal to verify the diseases prediction accuracy of the models is also added. This allows a reduction of the map of causes or diseases detected in strategic defined areas. At the same time, these key areas can be disaggregated when an alert indicator is identified, and shows which of the causes need special attention. This application of OWA can encourage the development of suitable computer systems for monitoring companies' problems, warn of failures and facilitate decision-making. In addition, taking Vigier and Terceño's 2008 model as a benchmark, causes aggregation operators are introduced to evaluate alternative groupings, and the adjustment measure using approximate solutions is proposed to test the model's prediction. The empirical estimation and the verification of the improvement proposals in a set of small and medium-sized enterprises (SMEs) in the construction industry are also presented. The functionality and the prediction capacity are thus measured and detected by monitoring key areas that warn about insolvency situations in the firm.
References (62)
- S. Balcaen, H. Ooghe, 35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems, Br. Account. Rev. 38 (1) (2006) 63-93.
- P.R. Kumar, V. Ravi, Bankruptcy prediction in banks and firms via statistical and intelligent techniques: a review, Eur. J. Oper. Res. 180 (1) (2007) 1-28.
- A. Bahrammirzaee, A comparative survey of artificial intelligence applications in finance: artificial neural networks, expert systems and hybrid intelligent systems, Neural Comput. Appl. 19 (8) (2010) 1165-1195.
- J. Sun, H. Li, Q.H. Huang, K.Y. He, Predicting financial distress and corporate failure: a review from the state of the art definitions, modeling, sampling, and featuring approaches, Knowl. Based Syst. 57 (2014) 41-56.
- K.O. Appiah, A. Chizema, J. Arthur, Predicting corporate failure: a systematic literature review of methodological issues, Int. J. Law Manage. 57 (5) (2015) 461-485.
- W. Beaver, Financial ratios as predictors of failure, J. Account. Res. 4 (1966) 71-111.
- E.I. Altman, Financial ratios, discriminant analysis and the prediction of corporate bankruptcy, J. Finance 23 (4) (1968) 589-609.
- J. Argenti, Corporate Collapse the Causes and Symptoms, John Wiley and Sons, New York, 1976.
- J. Argenti, Prediction corporate failure, Account. Dig. 138 (1983) 1-25.
- H. Ooghe, S. De Prijcker, Failure processes and causes of company bankruptcy: a typology, Manage. Decis. 46 (2) (2008) 223-242.
- R. Edmister, An empirical test of financial ratio analysis for small business failure prediction, J. Financ. Quant. Anal. 7 (2) (1972) 1477-1493.
- J. Flagg, G. Giroux, C. Wiggins, Predicting corporate bankruptcy suing failing firms, Rev. Financ. Econ. 1 (1991) 67-75.
- H. Platt, M. Platt, J. Pedersen, Bankruptcy discrimination with real variables, J. Bus. Finance Account. 21 (4) (1994) 491-510.
- K. Keasey, R. Watson, Non-financial symptoms and the prediction of small company failure: a test of Argenti's hypothesis, J. Bus. Finance Account. 14 (3) (1987) 335-354.
- S. Cho, J. Kim, J.K. Bae, An integrative model with subject weight based on neural network learning for bankruptcy prediction, Expert Syst. Appl. 36 (1) (2009) 403-410.
- L.A. Zadeh, Fuzzy sets, Inf. Control 8 (3) (1965) 338-353.
- H. Vigier, A. Terce ño, A model for the prediction of diseases of firms by means of fuzzy relations, Fuzzy Sets Syst. 159 (17) (2008) 2299-2316.
- E. Scarlat, C. Delcea, V. Maracine, Genetic fuzzy grey algorithms: a hybrid model for establishing companies' failure reasons, in: Proceedings of IEEE International Conference (SMC), Istanbul, Turkey, 2010, pp. 955-962.
- C. Delcea, E. Scarlat, The diagnosis of firm's disease using the grey systems theory methods, in: Proceedings of IEEE International Conference of GSIS, Nanjing, China, 2009, pp. 755-762.
- V. Maracine, C. Delcea, How we can diagnose the firm's diseases using grey systems theory, Econ. Comput. Econ. Cybern. Stud. Res. 3 (2009) 39-55.
- G.S. Ng, C. Quek, H. Jiang, FCMAC-EWS: a bank failure early warning system based on a novel localized pattern learning and semantically associative fuzzy neural network, Expert Syst. Appl. 34 (2008) 989-1003.
- C. Quek, R.W. Zhou, C.H. Lee, A novel fuzzy neural approach to data reconstruction and failure prediction, Intell. Syst. Account. Finance Manage. 16 (1-2) (2009) 165-187.
- V. Behbood, J. Lu, G. Zhang, Adaptive Inference-based learning and rule generation algorithms in fuzzy neural network for failure prediction, IEEE International Conference of Intelligent Systems and Knowledge Engineering (ISKE) (2010) 33-38.
- V. Behbood, J. Lu, Intelligent financial warning model using fuzzy neural network and case-based reasoning, IEEE Symposium on Computational Intelligence for Financial Engineering and Economics (CIFEr) (2011) 1-6.
- A. Thapar, D. Pandey, S.K. Gaur, Optimization of linear objective function with max-t fuzzy relation equations, Appl. Soft Comput. 9 (3) (2009) 1097-1101.
- A. Thapar, D. Pandey, S.K. Gaur, Satisficing solutions of multi-objective fuzzy optimization problems using genetic algorithm, Appl. Soft Comput. 12 (8) (2012) 2178-2187.
- T. Korol, A. Korodi, Predicting bankruptcy with the use of macroeconomic variables, Econ. Comput. Econ. Cybern. Stud. Res. 44 (1) (2010) 201-219.
- T. Korol, Multi-criteria early warning system against enterprise bankruptcy risk, Int. Res. J. Finance Econ. 61 (2011) 141-154.
- T. Korol, A. Korodi, An evaluation of effectiveness of fuzzy logic model in predicting the business bankruptcy, Rom. J. Econ. Forecast. 3 (1) (2011) 92-107.
- J. Gil Aluja, Ensayo sobre un modelo de diagnóstico económico-financiero, in: Proceedings of the V Jornadas Hispano-Lusas de Gestión Científica, Vigo, Spain, 1990, pp. 26-29.
- J. Gil Lafuente, El control de las actividades de marketing, Buenos Aires, Argentina, in: Proceedings of III SIGEF Congress, vol. 244, 1996, pp. 1-21.
- R.R. Yager, Families of OWA operators, Fuzzy Sets Syst. 59 (1993) 125-148.
- D. Dubois, H. Prade, A review of fuzzy sets aggregation connectives, Inf. Sci. 36 (1-2) (1985) 85-121.
- G.J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall, 1995.
- Z.S. Xu, Q.L. Da, An overview of operators for aggregating information, Int. J. Intell. Syst. 18 (2003) 953-969.
- G. Beliakov, How to build aggregation operators from data, Int. J. Intell. Syst. 18 (8) (2003) 903-923.
- D. Dubois, H. Prade, On the use of aggregation operations in information fusion processes, Fuzzy Sets Syst. 142 (1) (2004) 43-161.
- G. Beliakov, A. Pradera, T. Calvo, Aggregation Functions: A Guide for Practitioners, Springer-Verlag, Berlin, 2007.
- J. Vaníček, I. Vrana, S. Aly, Fuzzy aggregation and averaging for group decision making: a generalization and survey, Knowl. Based Syst. 22 (1) (2009) 79-84.
- J.M. Merigó, M. Casanovas, D. Palacios-Marqués, Linguistic group decision making with induced aggregation operators and probabilistic information, Appl. Soft Comput. 24 (2014) 669-678.
- R.R. Yager, Heavy OWA operators, Fuzzy Optim. Decis. Mak. 1 (4) (2002) 379-397.
- R.R. Yager, Generalized OWA aggregation operators, Fuzzy Optim. Decis. Mak. 3 (1) (2004) 93-107.
- R.R. Yager, Prioritized OWA aggregation, Fuzzy Optim. Decis. Mak. 8 (3) (2009) 245-262.
- Z.S. Xu, Induced uncertain linguistic OWA operators applied to group decision making, Inf. Fusion 7 (2) (2006) 231-238.
- J.M. Merigó, A.M. Gil-Lafuente, The induced generalized OWA operator, Inf. Sci. 179 (6) (2009) 729-741.
- J.M. Merigó, M. Casanovas, Decision making with distance measures and induced aggregation operators, Comput. Ind. Eng. 60 (2011) 66-76.
- J.M. Merigó, Fuzzy multi-person decision making with fuzzy probabilistic aggregation operators, Int. J. Fuzzy Syst. 13 (2011) 163-173.
- J.M. Merigó, Probabilities in the OWA operator, Expert Syst. Appl. 39 (13) (2012) 11456-11467.
- Y. Xu, H. Wang, The induced generalized aggregation operators for intuitionistic fuzzy sets and their application in group decision making, Appl. Soft Comput. 12 (3) (2012) 1168-1179.
- M.E. Porter, The competitive advantage of notions, Harv. Bus. Rev. 68 (2) (1990) 73-93.
- J. Grunert, L. Norden, M. Weber, The role of non-financial factors in internal credit ratings, J. Bank. Finance 29 (2) (2005) 509-531.
- M. Peel, D. Peel, Some further empirical evidence on predicting private company failure, Account. Bus. Res. 18 (69) (1987) 57-66.
- H.P. Vigier et al. / Applied Soft Computing xxx (2016) xxx-xxx 9
- G.L. Serer, P.J. Campillo, E.J.V. Ferrer, Modelización temporal de los ratios contables en la detección del fracaso empresarial de la PYME espa ñola, Span. J. Finance Account. 38 (143) (2009) 423-447.
- M.J.M. Quintana, A.G. Gallego, Factores determinantes del fracaso empresarial en Castilla y León, Rev. Econ. Empresa 21 (51) (2004) 95-116.
- A.L.G. Pérez, A.C. Rodríguez, M.A. Molina, Factores determinantes de la rentabilidad financiera de las PyMEs, Span. J. Finance Account. 31 (112) (2002) 395-429.
- H. Vigier, A. Terce ño, Analysis of the inconsistency problem in the model for predicting diseases of firms, Fuzzy Econ. Rev. 17 (1) (2012) 73-88.
- A. Terce ño, H. Vigier, V. Scherger, Application of a fuzzy model of economic-financial diagnosis to SMEs, in: J. Gil Aluja, A. Terce ño (Eds.), Methods for Decision Making in an Uncertain Environment, World Scientific Publishing, Singapure, 2012, pp. 146-162 (personal communication).
- A. Terce ño, H. Vigier, V. Scherger, Identificaci ñn de las causas en el diagn ñstico empresarial mediante relaciones Fuzzy y el BSC, Actualidad Contable Fases 17 (28) (2014) 101-118 (personal communication).
- V. Scherger, A. Terce ño, H. Vigier, M.G. Barberá-Mariné, Detection and assessment of causes in business diagnosis, Econ. Comput. Econ. Cybern. Stud. Res. 49 (4) (2015) 211-229 (personal communication).
- V. Scherger, H. Vigier, M.G. Barberá-Mariné, Finding business failure reasons through a fuzzy model of diagnosis, Fuzzy Econ. Rev. 19 (1) (2014) 45-62 (personal communication).
- A. Terce ño, H. Vigier, M.G. Barberá-Mariné, V. Scherger, Hacia una integración de la Teoría del Diagnóstico Fuzzy y del Balanced Scorecard, in: Proceedings of XV SIGEF Conference, Lugo, Spain, 2009, pp. 364-379 (personal communication).