Academia.eduAcademia.edu

Outline

Bimodal Emotion Recognition using Speech and Physiological Changes

https://doi.org/10.5772/4754

Abstract
sparkles

AI

This research focuses on enhancing emotion recognition systems for human-robot interaction by integrating speech signals and physiological measures. The study highlights the challenges in reliably identifying emotions due to variability in signal patterns and the subjective nature of emotional expression. It proposes the use of a multimodal approach, combining audio and biosignal data, to improve recognition accuracy, addressing conflicts between modalities and synchronization issues. The findings suggest that integrating these modalities can yield superior outcomes in recognizing user emotions, ultimately fostering more empathetic human-robot interactions.

References (22)

  1. References
  2. Batliner, A.; Zeissler, V.; Frank, C.; Adelhardt, J.; Shi, R. P. & Nöth, E. (2003). We are not amused-but how do you know? user states in a multi-modal dialogue system, In EUROSPEECH'03, Geneva, pp. 733-736.
  3. Busso, C.; Deng, Z.; Yildirim, S.; Bulut, M.; Lee, C. H.; Kazemzaden, A.; Lee, S.; Neumann, U. & Narayanan, S. (2004). Analysis of emotion recognition using facial expression, speech and multimodal information, in ICMI'04, State College, Pennsylvania, USA, pp. 205-211
  4. Chen, L. S.; & Huang, T. S. (2000). Emotional expressions in audiovisual human computer interaction," in ICME-2000, pp. 423-426
  5. Chen, L. S. (2000). Joint processing of audio-visual information for the recognition of emotional expression in human-computer interaction, Ph.D. dissertation, University of Illinois at Urbana-Champaign, Dept. of Electrical Engineering
  6. Cowie, R.; Douglas-Cowie, E.; Tsapatsoulis, N.; Votsis, G.; Kollias, S.; Fellenz, W. & Taylor, J. G. (2001). Emotion recognition in human-computer interaction, IEEE Signal Processing Mag., vol. 18, pp. 32-80
  7. Davidson, R. J. (1993). Parsing affective space: Perspectives from neuropsychology and psychophysiology, Neuropsychology, vol. 7, no. 4, pp. 464-475
  8. De Silva, L. C. & Ng, P. C. (2000). Bimodal emotion recognition, In: IEEE International Conf. on Automatic Face and Gesture Recognition, pp. 332-335
  9. Douglas-Cowie, E.; Devillers, L.; Martin, J.-C.; Cowie, R.; Savvidou, S.; Abrilian, S. & Cox, C. (2005). Multimodal Databases of Everyday Emotion: Facing up to Complexity," in InterSpeech, Lisbon
  10. Fredricson, B. L. & Levenson, R. W. (1998). Positive emotions speed recovery from the cardiovascular sequelae of negative emotions, Cognition and Emotion, vol. 12, no. 2, pp. 191-220
  11. Kim, J.; André, E.; Rehm, M.; Vogt, T. & Wagner, J. (2005). Integrating information from speech and physiological signals to achieve emotional sensitivity, in INTERSPEECH-2005, Lisbon, Portugal, pp. 809-812
  12. Kim, K. H.; Bang, S. W. & Kim, S. R. (2004). Emotion recognition system using short-term monitoring of physiological signals. Med. Biol. Eng. Comput, vol. 42, no. 3, pp. 419- 427
  13. King, R. D.; Feng, C. & Shutherland, A. (1995). StatLog: Comparison of Classification Algorithms on Large Real-world Problems, Applied Artificial Intelligence, vol. 9(3), pp. 259-287
  14. Lang, P. (1995). The emotion probe: Studies of motivation and attention, American Psychologist, vol. 50(5), pp. 372-385
  15. Lazarus, R. S. (1991) Emotion and adaptation. Cambridge UK: Cambridge University Press Nasoz, F.; Alvarez, K.; Lisetti, C. & Finkelstein, N. (2003). Emotion recognition from physiological signals for presence technologies, International Journal of Cognition, Technology, and Work -Special Issue on Presence, vol. 6(1)
  16. Nwe, T. L.; Wei, F. S. & Silva, L. C. D. (2001). Speech based emotion classification, In IEEE Region 10 International Conference on Electrical Electronic Technology, vol. 1, pp. 297- 301
  17. Pan, J. & Tompkins, W. (1985). A real-time qrs detection algorithm, IEEE Trans. Biomed. Eng., vol. 32, no. 3
  18. Picard, R.; Vyzas, E. & Healy, J. (2001). Toward machine emotional intelligence: Analysis of affective physiological state, IEEE Trans. Pattern Anal. and Machine Intell., vol. 23, no. 10, pp. 1175-1191
  19. Scholsberg, H. (1954). Three dimensions of emotion, Psychological Review, vol. 61, pp. 81-88
  20. Tooby, J. & Cosmides, L. (1990). The past explains the present: Emotional adaptations and the structure of ancestral environments, Ethology and Sociobiology, vol. 11, pp. 375- 424
  21. Wagner, J.; Kim, J. & Andr´e, E. (2005). From physiological signals to emotions: Implementing and comparing selected methods for feature extraction and classification, In: ICME'05, Amsterdam
  22. Zeng, Z.; Tu, J.; Liu, M.; Zhang, T.; Rizzolo, N.; Zhang, Z.; Huang, T. S.; Roth, D. & Levinson, S. (2004). Bimodal HCI-related affect recognition, in ICMI 2004