Academia.eduAcademia.edu

Outline

The new Minimal Standard Model

2005, Physics Letters B

https://doi.org/10.1016/J.PHYSLETB.2005.01.026

Abstract

We construct the New Minimal Standard Model that incorporates the new discoveries of physics beyond the Minimal Standard Model (MSM): Dark Energy, non-baryonic Dark Matter, neutrino masses, as well as baryon asymmetry and cosmic inflation, adopting the principle of minimal particle content and the most general renormalizable Lagrangian. We base the model purely on empirical facts rather than aesthetics. We need only six new degrees of freedom beyond the MSM. It is free from excessive flavor-changing effects, CP violation, too-rapid proton decay, problems with electroweak precision data, and unwanted cosmological relics. Any model of physics beyond the MSM should be measured against the phenomenological success of this model.

References (34)

  1. D. N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003).
  2. L. Verde et al., Mon. Not. Roy. Astron. Soc. 335, 432 (2002).
  3. S. Perlmutter et al., Astrophys. J. 517, 565 (1999).
  4. A. G. Riess et al., Astron. J. 116, 1009 (1998).
  5. Y. Fukuda et al., Phys. Rev. Lett. 81, 1562 (1998).
  6. S. N. Ahmed et al., arXiv:nucl-ex/0309004.
  7. K. Eguchi et al., Phys. Rev. Lett. 92, 071301 (2004).
  8. E. Komatsu et al., Astrophys. J. Suppl. 148, 119 (2003).
  9. V. Silveira and A. Zee, Phys. Lett. B 161, 136 (1985).
  10. J. McDonald, Phys. Rev. D 50, 3637 (1994), actually consid- ered a complex S.
  11. C. P. Burgess, M. Pospelov and T. ter Veldhuis, Nucl. Phys. B 619, 709 (2001).
  12. G. Lazarides, Q. Shafi and C. Wetterich, Nucl. Phys. B 181, 287 (1981);
  13. R. N. Mohapatra and G. Senjanovic, Phys. Rev. D 23, 165 (1981).
  14. M. Fukugita and T. Yanagida, Phys. Lett. B 174, 45 (1986);
  15. P. H. Frampton, S. L. Glashow and T. Yanagida, Phys. Lett. B 548, 119 (2002).
  16. T. Endoh, et al., Phys. Rev. Lett. 89, 231601 (2002).
  17. K. Dick, et al., Phys. Rev. Lett. 84, 4039 (2000);
  18. H. Murayama and A. Pierce, Phys. Rev. Lett. 89, 271601 (2002).
  19. V. Barger, et al., Phys. Lett. B 583, 173 (2004).
  20. A. D. Linde, Phys. Lett. B 129, 177 (1983).
  21. H. V. Peiris et al., Astrophys. J. Suppl. 148, 213 (2003).
  22. U. Seljak et al., "Cosmological parameter analysis including SDSS Ly-alpha forest and galaxy arXiv:astro-ph/0407372.
  23. J. R. Ellis, M. Raidal and T. Yanagida, Phys. Lett. B 581, 9 (2004).
  24. G. Lazarides and Q. Shafi, Phys. Lett. B 258, 305 (1991).
  25. T. Asaka, et al., Phys. Rev. D 61, 083512 (2000).
  26. M. Lindner, Z. Phys. C 31, 295 (1986).
  27. CDMS Collaboration], arXiv:astro-ph/0405033.
  28. R. Bernabei et al., Riv. Nuovo Cim. 26N1, 1 (2003).
  29. R. Gaitskell and V. Mandic, http://dmtools.berkeley.edu/limitplots/
  30. LEP Collaboration], arXiv:hep-ex/0312023.
  31. R. Barate et al., Phys. Lett. B 565, 61 (2003).
  32. A. Djouadi, J. Kalinowski and M. Spira, Comput. Phys. Com- mun. 108, 56 (1998).
  33. See, e.g., H. Murayama and C. Peña-Garay, Phys. Rev. D 69, 031301 (2004).
  34. It may well be possible to achieve successful inflation also with small field amplitudes (small-field models), but many existing models require more than one degree of freedom; we do not pursue this interesting possibility further in this letter.