Academia.eduAcademia.edu

Outline

How the eye measures reality and virtual reality

1997, Behavior Research Methods, Instrumentation, & Computers

Abstract

If virtual reality systems are to make good on their name, designers must know how people perceive space in natural environments, in photographs, and in cinema. Perceivers understand the layout of a cluttered natural environment through the use of nine or more sources of information, each based on different assumptions—occlusion, height in the visual field, relative size, relative density, aerial per- spective, binocular disparities, accommodation, convergence, and motion perspective. The relative utility of these sources at different distances is compared, using their ordinal depth-threshold func- tions. From these, three classes of space around a moving observer are postulated: personal space, ac- tion space, and vista space. Within each, a smaller number of sources act in consort, with different rel- ative strengths. Given the general ordinality of the sources, these spaces are likely to be affine in character, stretching and collapsing with viewing conditions. One of these conditions is controlled by lens length in photography and cinematography or by field-of-view commands in computer graphics. These have striking effects on many of these sources of information and, consequently, on how the lay- out of a scene is perceived.

References (123)

  1. Anderson, B. L., & Nakayama, K. (1994). Towards a general theory of stereopsis: Binocular matching, occluding contours and fusion. Psychological Review, 101, 414-445.
  2. Arditi, A. (1986). Binocular vision. In K. R. Boff, L. Kaufman, & J. P. Thomas (Eds.) Handbook of perception and human performance (Vol. 1, pp. 23:1 to 23:41). New York: Wiley.
  3. Baird, J. C., & Biersdorf, W. R. (1967). Quantitative functions for size and distance. Perception & Psychophysics, 2, 161-166.
  4. Baird, J. C., & Wagner, M. (1983). Modeling the creation of cognitive maps. In H. L. Pick, Jr., & L. P. Acredolo (Eds.), Spatial orientation: Theory, research, and application (pp. 321-366). New York: Plenum.
  5. Barlow, H. B. (1978). The efficiency of detecting changes of density in random dot patterns. Vision Research, 18, 637-650.
  6. Battro, A. M., Netto, S. P., & Rozestraten, R. J. A. (1983). Depth perception of surfaces of variable curvature in visual space: Looking for conventions in Pandora's box. Perception, 5, 9-23.
  7. Bell, J. C. (1993). Zaccolini's theory of color perspective. Art Bulletin, 75, 91-112.
  8. Biederman, C. (1948). Art as the evolution of visual knowledge. Red Wing, MN: Charles Biederman.
  9. Bingham, G. (1993). Form as information about scale: Perceiving the size of trees. Journal of Experimental Psychology: Human Perception & Performance, 19, 1139-1161.
  10. Birnbaum, M. H. (1983). Scale convergence as a principle for the study of perception. In H. Geissler (Ed.), Modern issues in perception (pp. 319-335). Amsterdam: North-Holland.
  11. Blank, A. A. (1978). Metric geometry in human binocular vision: The- ory and fact. In E. E. J. Leeuwenberg & H. F. Buffart (Eds.), Formal theories of visual perception (pp. 82-102). Chichester, U.K.: Wiley.
  12. Blatt, S. J. (1984). Continuity and change in art. Hillsdale, NJ: Erlbaum.
  13. Boring, E. G. (1942). Sensation and perception in the history of ex- perimental psychology. New York: Appleton-Century-Crofts.
  14. Braunstein, M. L. (1962). Depth perception in rotating dot patterns: Effects of numerosity and perspective. Journal of Experimental Psy- chology, 64, 415-420.
  15. Braunstein, M. L. (1976). Depth perception through motion. New York: Academic Press.
  16. Bülthoff, H. H., & Mallot, H. A. (1988). Interpreting depth mod- ules: Stereo and shading. Journal of the Optical Society of America A, 5, 1749-1758.
  17. Burton, H. (1945). The optics of Euclid. Journal of the Optical Soci- ety of America, 35, 357-372.
  18. Busey, T. A., Brady, N. P., & Cutting, J. E. (1990). Compensation is unnecessary for the perception of faces in slanted pictures. Percep- tion & Psychophysics, 48, 1-11.
  19. Cavanagh, P., & Leclerc, Y. G. (1990). Shape from shadows. Journal of Experimental Psychology: Human Perception & Performance, 15, 3-27.
  20. Chapanis, A., & McCleary, R. A. (1955). Interposition as a cue for the perception of relative distance. American Journal of Psychology, 48, 113-132.
  21. Chauvet, J.-M., Brunel Deschamps, E., & Hillaire, C. (1995). La grotte Chauvet à Vallon-Pont-d'Arc. Paris: Seuil.
  22. Clottes, J. (1995). Les cavernes di Niaux. Paris: Seuil.
  23. Clottes, J. (1996, January). Le grotte ornate del paleolitico. Le Scienze: edizione italiana di Scientific American, 329(1), 62-68.
  24. Cole, A. (1992). Perspective. London: Dorling Kindersley.
  25. Cook, M. (1978). Judgment of distance on a plane surface. Perception & Psychophysics, 23, 85-90.
  26. Cutting, J. E. (1986). Perception with an eye for motion. Cambridge, MA: MIT Press, Bradford Books.
  27. Cutting, J. E. (1987). Rigidity in cinema seen from the front row, side aisle. Journal of Experimental Psychology: Human Perception & Performance, 13, 323-334.
  28. Cutting, J. E. (1988). Affine distortions in pictorial space: Some pre- dictions for Goldstein (1987) that La Gournerie (1959) might have made. Journal of Experimental Psychology: Human Perception & Performance, 14, 305-311.
  29. Cutting, J. E. (1991). Four ways to reject directed perception. Ecolog- ical Psychology, 3, 25-34.
  30. Cutting, J. E., & Millard, R. M. (1984). Three gradients and the per- ception of flat and curved surfaces. Journal of Experimental Psy- chology: General, 113, 198-216.
  31. Cutting, J. E., Springer, K., Braren, P., & Johnson, S. (1992). Wayfinding on foot from information in retinal, not optical, flow. Journal of Experimental Psychology: General, 121, 41-72.
  32. Cutting, J. E., & Vishton, P. M. (1995). Perceiving layout and knowing distances: The integration, relative potency, and contextual use of dif- ferent information about depth. In W. Epstein & S. Rogers (Eds.), Per- ception of space and motion (pp. 69-117). San Diego: Academic Press.
  33. Daniels, N. (1974). Thomas Reid's inquiry. New York: Burt Franklin.
  34. DaSilva, J. A. (1985). Scales of perceived egocentric distance in a large open field: Comparison of three psychophysical methods. American Journal of Psychology, 98, 119-144.
  35. Dosher, B. A., Sperling, G., & Wurst, S. A. (1986). Tradeoffs be- tween stereopsis and proximity luminance covariation as determinants of perceived 3D structure. Vision Research, 26, 973-990.
  36. Dunn, B. E., Gray, G. C., & Thompson, D. (1965). Relative height on the picture-plane and depth perception. Perceptual & Motor Skills, 21, 227-236.
  37. Durgin, F. H. (1995). Texture density adaptation and the perceived nu- merosity and distribution of texture. Journal of Experimental Psy- chology: Human Perception & Performance, 21, 149-169.
  38. Durgin, F. H., Proffitt, D. R., Olson, T. J., & Reinke, K. S. (1995). Comparing depth from motion with depth from binocular disparity. Journal of Experimental Psychology: Human Perception & Perfor- mance, 21, 679-699.
  39. Duwaer, A. L., & van den Brink, G. (1981). What is the diplopia threshold? Perception & Psychophysics, 29, 295-309.
  40. Epstein, W. (1963). The influence of assumed size on apparent dis- tance. American Journal of Psychology, 76, 257-265.
  41. Farber, J., & Rosinski, R. R. (1978). Geometric transformations of pictured space. Perception, 7, 269-282.
  42. Ferris, S. H. (1972). Motion parallax and absolute distance. Journal of Experimental Psychology, 95, 258-263.
  43. Fisher, S. K., & Ciuffreda, K. J. (1988). Accommodation and appar- ent distance. Perception, 17, 609-612.
  44. Flock, H. R. (1964). A possible optical basis for monocular slant per- ception. Psychological Review, 71, 380-391.
  45. Foley, J. M. (1991). Stereoscopic distance perception. In S. R. Ellis, M. K. Kaiser, & A. C. Grunwald (Eds.), Pictorial communication in virtual and real environments (pp. 559-566). London: Taylor & Francis.
  46. Freeman, R. B. (1966). Absolute threshold for visual slant: The effect of size and retinal perspective. Journal of Experimental Psychology, 71, 170-176.
  47. Gerbino, W., Stultiens, C. J., & Troost, J. M. (1990). Transparent layer constancy. Journal of Experimental Psychology: Human Per- ception & Performance, 16, 3-20.
  48. Gibson, J. J. (1950). Perception of the visual world. Boston: Houghton Mifflin.
  49. Gogel, W. C. (1961). Convergence as a cue to absolute distance. Jour- nal of Psychology, 52, 287-301.
  50. Gogel, W. C., & Tietz, J. D. (1973). Absolute motion parallax and the specific distance tendency. Perception & Psychophysics, 13, 284-292.
  51. Gombrich, E. H. (1995). Shadows: The depiction of cast shadows in Western art. New Haven, CT: Yale University Press.
  52. Graham, C. H., Baker, K. E., Hecht, M., & Lloyd, V. V. (1948). Fac- tors influencing thresholds for monocular movement parallax. Jour- nal of Experimental Psychology, 38, 205-223.
  53. Grünbaum, A. (1973). Philosophical problems of space and time (2nd ed.). Boston: Reidel.
  54. Gulick, W. L., & Lawson, R. B. (1976). Human stereopsis. New York: Oxford University Press.
  55. Hagen, M. A. (1986). Varieties of realism: Geometries of representa- tional art. Cambridge: Cambridge University Press.
  56. Hall, E. T. (1966). The hidden dimension. New York: Doubleday.
  57. Helmholtz, H. von (1925). Physiological optics (3rd ed., Vol. 3; J. P. C. Southall, Trans.). Menasha, WI: The Optical Society of America. (Original work published 1867)
  58. Hobbs, J. A. (1991). Art in context (4th ed.). Fort Worth, TX: Harcourt Brace & Jovanovich.
  59. Hochberg, J. (1971). Perception. In J. W. Kling & L. A. Riggs (Eds.), Handbook of experimental psychology (3rd ed., pp. 396-550). New York: Holt, Rinehart & Winston.
  60. Hofsten, C. von (1976). The role of convergence in space perception. Vision Research, 16, 193-198.
  61. Indow, T. (1990). A critical review of Luneburg's model with regard to global structure of visual space. Psychological Review, 98, 430-453.
  62. Johansson, G. (1973). Monocular movement parallax and near-space perception. Perception, 2, 136-145.
  63. Julesz, B. (1971). Foundations of cyclopean perception. Chicago: Uni- versity of Chicago Press.
  64. Kaplan, G. A. (1969). Kinetic disruption of optical texture: The per- ception of depth at an edge. Perception & Psychophysics, 6, 193-198.
  65. Kersten, D., & Legge, G. (1983). Convergence accommodation. Jour- nal of the Optical Society of America, 73, 322-388.
  66. Kosslyn, S. M., Pick, H. L., & Fariello, G. R. (1974). Cognitive maps in children and men. Child Development, 45, 707-716.
  67. Kubovy, M. (1986). The psychology of perspective and renaissance art. Cambridge: Cambridge University Press.
  68. Künnapas, T. (1968). Distance perception as a function of available vi- sual cues. Journal of Experimental Psychology, 77, 523-529.
  69. Landy, M. S., Maloney, L. T., Johnston, E. B., & Young, M. (1995). Measurement and modeling of depth cue combination. Vision Re- search, 35, 389-412.
  70. Landy, M. S., Maloney, L. T., & Young, M. J. (1991). Psychophysi- cal estimation of the human depth combination rule. In P. S. Shenker (Ed.), Sensor fusion III: 3-D perception and recognition (Proceed- ings of the SPIE, Vol. 1383, pp. 247-254).
  71. Leibowitz, H. W., Shina, K., & Hennessy, R. T. (1972). Oculomotor adjustments and size constancy. Perception & Psychophysics, 12, 497-500.
  72. Lie, I. (1965). Convergence as a cue to perceived size and distance. Scandinavian Journal of Psychology, 6, 109-116.
  73. Loomis, J. M., DaSilva, J. A., Fujita, N., & Fukushima, S. S. (1992). Visual space perception and visually directed action. Journal of Ex- perimental Psychology: Human Perception & Performance, 18, 906-921.
  74. Loomis, J. M., DaSilva, J. A., Philbeck, J. W., & Fukushima, S. S. (1996). Visual perception of location and distance. Current Direc- tions in Psychological Science, 5, 72-77.
  75. Lumsden, E. A. (1980). Problems of magnification and minification: An explanation of the distortions of distance, slant, and velocity. In M. Hagen (Ed.), The perception of pictures (Vol. 1, pp. 91-135). New York: Academic Press.
  76. Luneburg, R. K. (1947). Mathematical analysis of binocular vision. Princeton, NJ: Princeton University Press.
  77. Lythgoe, J. N. (1979). The ecology of vision. Oxford: Oxford Univer- sity Press.
  78. Marr, D. (1981). Vision. San Francisco: Freeman.
  79. Metelli, F. (1974). The perception of transparency. Scientific Ameri- can, 230(4), 90-98.
  80. Minnaert, M. (1993). Light and color outdoors. New York: Springer- Verlag.
  81. Morgan, M. W. (1968). Accommodation and convergence. American Journal of Optometry & Archives of American Academy of Optome- try, 45, 417-454.
  82. Nagata, S. (1991). How to reinforce perception of depth in single two- dimensional pictures. In S. R. Ellis, M. K. Kaiser, & A. C. Grunwald (Eds.), Pictorial communication in virtual and real environments (pp. 527-545). London: Taylor & Francis.
  83. Norman, J. F., Todd, J. T., & Phillips, F. (1995). The perception of sur- face orientation from multiple sources of optical information. Per- ception & Psychophysics, 57, 629-636.
  84. Nougier, L. R. (1969). Art préhistorique. Paris: Librarie Générale Française.
  85. Ogle, K. O. (1952). On the limits of stereoscopic vision. Journal of Ex- perimental Psychology, 48, 50-60.
  86. Ogle, K. O. (1958). Note on stereoscopic acuity and observation dis- tance. Journal of the Optical Society of America, 48, 794-798.
  87. Pirenne, M. H. (1970). Optics, painting, & photography. Cambridge: Cambridge University Press.
  88. Proffitt, D. R., Rock, I., Hecht, H., & Schubert, J. (1992). Stereo- kinetic effect and its relation to the kinetic depth effect. Journal of Ex- perimental Psychology: Human Perception & Performance, 18, 3-21.
  89. Purdy, J., & Gibson, E. J. (1955). Distance judgments by the method of fractionation. Journal of Experimental Psychology, 50, 374-380.
  90. Ratoosh, P. (1949). On interposition as cue for the perception of dis- tance. Proceedings of the National Academy of Sciences, 35, 257-259.
  91. Richter, J. P. (1970). The notebooks of Leonardo da Vinci. New York: Dover Press. (Original translation published 1883)
  92. Rieser, J. J., Ashmead, D. H., Talor, C. R., & Youngquist, G. A. (1990). Visual perception and the guidance of locomotion without vision to previously seen targets. Perception, 19, 675-689.
  93. Rogers, B. J., & Graham, M. (1979). Motion parallax as an indepen- dent cue for depth. Perception, 8, 125-134.
  94. Roscoe, S. N. (1984). Judgments of size and distance with imaging dis- plays. Human Factors, 27, 615-636.
  95. Ruspoli, M. (1986). Lascaux: Un nouveau regard. Paris: Bordas.
  96. Scharf, A. (1968). Art and photography. London: Penguin.
  97. Sommer, R. (1969). Personal space. Englewood Cliffs, NJ: Prentice Hall.
  98. Suppes, P. (1977). Is visual space Euclidean? Synthèse, 35, 397-421.
  99. Swedlund, C. (1974). Photography: A handbook of history, materials, and processes. New York: Holt, Rinehart & Winston.
  100. Teghtsoonian, R., & Teghtsoonian, M. (1970). Scaling apparent dis- tance in a natural outdoor setting. Psychonomic Science, 21, 215-216.
  101. Teichner, W. H., Kobrick, J. L., & Wehrkamp, R. F. (1955). The ef- fects of terrain and observation distance on relative depth perception. American Journal of Psychology, 68, 193-208.
  102. Tittle, J. S., Todd, J. T., Perotti, V. J., & Norman, J. F. (1995). The systematic distortion of perceived 3-D structure from motion and binocular stereopsis. Journal of Experimental Psychology: Human Perception & Performance, 21, 663-677.
  103. Todd, J. T. (1985). Perception of structure from motion: Is projective correspondence of moving elements a necessary condition? Journal of Experimental Psychology: Human Perception & Performance, 11, 689-710.
  104. Todd, J. T., & Akerstrom, R. A. (1987). Perception of three-dimensional form from patterns of optical texture. Journal of Experimental Psy- chology: Human Perception & Performance, 13, 242-255.
  105. Todd, J. T., & Reichel, F. D. (1989). Ordinal structure in the visual per- ception and cognition of smoothly curved surfaces. Psychological Review, 96, 643-657.
  106. Toulet, E. (1988). Cinématographie: Invention du siècle. Paris: Dé- couvertes Gallimard.
  107. Toye, R. C. (1986). The effect of viewing position on the perceived lay- out of space. Perception & Psychophysics, 40, 85-92.
  108. van den Berg, A.V., & Brenner, E. (1994). Why two eyes are better than one for judgments of heading. Nature, 371, 700-702.
  109. Wagner, M. (1985). The metric of visual space. Perception & Psycho- physics, 38, 483-495.
  110. Wallach, H., & Karsh, E. B. (1963). Why the modification of stereo- scopic depth-perception is so rapid. American Journal of Psychol- ogy, 76, 413-420.
  111. Wallach, H., & Norris, C. M. (1963). Accommodation as a distance cue. American Journal of Psychology, 76, 659-664.
  112. Wallach, H., & O'Connell, D. N. (1953). The kinetic depth effect. Journal of Experimental Psychology, 45, 205-217.
  113. Wanger, L. R., Ferwerda, J. A., & Greenberg, D. P. (1992, May). Perceiving the spatial relationships in computer-generated images. IEEE Computer Graphics, 12, 44-59.
  114. Watson, J. S., Banks, M. S., Hofsten, C. von, & Royden, C. S. (1992). Gravity as a monocular cue for perception of absolute dis- tance and/or absolute size. Perception, 12, 259-266.
  115. Wheatstone, C. (1838). Contributions to the physiology of vision: I. On some remarkable, and hitherto unobserved, phenomena of binocular vision. Philosophical Transactions of the Royal Society of London, 128, 371-394.
  116. Wright, L. (1983). Perspective in perspective. London: Routledge & Kegan Paul.
  117. Yonas, A., Craton, L. G., & Thompson, W. B. (1987). Relative mo- tion: Kinetic information for the order of depth at an edge. Percep- tion & Psychophysics, 41, 53-59.
  118. Yonas, A., & Granrud, C. E. (1985). The development of sensitivity to kinetic, binocular, and pictorial depth information in human in- fants. In D. Ingle & D. N. Lee (Eds.), Brain mechanisms and spatial vision (pp. 113-145). Dordrecht: Martinus Nijhoff.
  119. Zegers, R. T. (1948). Monocular movement parallax thresholds as functions of field size, field position, and speed of stimulus move- ment. Journal of Psychology, 26, 477-498.
  120. There is some controversy over the dating of the Chauvet paintings. An early report of carbon dating in the press stated that they were 30,000 years old ("Les peintures de la grotte Chauvet datent de 30 000 ans avant nôtre ère," Le Monde, Juin 4/5, 1995). Later, however, Clottes (1996) reported that they were 20,000 years old. Regardless of which dating is correct, the Chauvet paintings are the oldest large collection of paleolithic art yet found.
  121. This approach contrasts with others in the literature. For example, Landy, Maloney, Johnston, and Young (1995) start by considering the sources that imply the strongest measurement scales, and use them to modify those with weaker scales.
  122. Relative size should not be confused with familiar size (see, e.g., Epstein, 1963), which relies on knowledge of the observer; relative size assumes only the presence of many similarly shaped and sized objects.
  123. The disparity function moves because depth is compressed while the distance between the eyes remains the same. This effectively makes disparities useful at greater depth in the scene. It could also serve to make things look a bit smaller, as discussed in connection with the stereograms of sequoias.