Academia.eduAcademia.edu

Outline

Computational Simulation of Dynamic Stall on the NLR 7301 Airfoil

2000, Journal of Fluids and Structures

https://doi.org/10.1006/JFLS.2000.0299

Abstract

The dynamic stall behavior of the supercritical NLR 7301 airfoil is analyzed with a 2-D thin-layer Navier}Stokes code. The code solves the compressible Reynolds-averaged Navier-Stokes equations with an upwind biased numerical scheme in combination with the Baldwin}Lomax or the Baldwin}Barth turbulence models. The e!ect of boundary layer transition is incorporated using the transition length model of Gostelow et al. The transition onset location is determined with Michel's formula or it can be speci"ed as an input parameter. The two turbulence models yield signi"cantly di!erent steady-state lift coe$cients at incidences greater than 83. The use of the one-equation Baldwin}Barth model together with the Gostelow transition model is found to give substantially better agreement with the experimental data of McCroskey et al. than the Baldwin}Lomax model. Also, the unsteady computations are strongly a!ected by the choice of the turbulence model. The Baldwin}Barth model predicts the lift hysteresis loops consistently better than the algebraic turbulence model. However, the one-equation model improves the prediction of the moment hysteresis loops only for one test case.

References (19)

  1. BALDWIN,B .S .&L OMAX, H. 1978 Thin layer approximation and algebraic model for separated turbulent #ow. AIAA Paper 78}257.
  2. BALDWIN,B .S .&B ARTH, T. J. 1990 A One-equation turbulence transport model for high Reynolds number wall-bounded #ows. NASA TM 102847.
  3. CARR,L .W .&C HANDRASEKHARA, M. S. 1996 Computational prediction of airfoil dynamic stall. Progress in Aerospace Sciences 32, 523}573.
  4. CEBECI,T.&BRADSHAW, P. 1977 Momentum ¹ransfer in Boundary ¸ayers. Washington: Hemisphere Publishing Corporation, p. 153.
  5. CHAKRAVARTHY,S .R .&O SHER, S. 1985 A new class of high accuracy TVD schemes for hyperbolic conservation laws. AIAA Paper 85}0363.
  6. CLARKSON, J. D., EKATERINARIS,J.A.&PLATZER, M. F. 1993 Computational investigation of airfoil stall #utter. Proceedings International Symposium on ;nsteady Aerodynamics, Aeroacoustics and Aeroelasticity of ¹urbomachines and Propellers pp. 415}432. Berlin: Springer Verlag.
  7. EKATERINARIS,J .A .&P LATZER, M. F. 1997 Computational prediction of the airfoil dynamic stall. Progress in Aerospace Sciences 33, 759}846.
  8. EKATERINARIS,J.A.&PLATZER, M. F. 1996 Numerical investigation of stall #utter. ASME Journal of ¹urbomachinery 118, 197}203.
  9. EKATERINARIS, J. A., CHANDRASEKHARA,M.S.&PLATZER, M. F. 1995 Analysis of low Reynolds number airfoil #ows. Journal of Aircraft 32, 625}630.
  10. EKATERINARIS, J. A., CRICELLI,A .S .&P LATZER, M. F. 1994 A zonal method for unsteady viscous compressible airfoil #ows. Journal of Fluids and Structures 8, 107}123.
  11. GOSTELOW, J. P., MELWANI,N .&W ALKER, G. J. 1996 E!ects of a streamwise pressure gradient on turbulent spot development. ASME Journal of ¹urbomachinery 118, 737}747.
  12. GROSHMEYER, S. P., EKATERINARIS,J.A.&PLATZER, M. F. 1991 Numerical investigation of the e!ect of leading edge geometry on dynamic stall of airfoils. AIAA 22nd Fluid Dynamics, Plasma Dynamics ¸asers Conference, AIAA Paper No. 91}1798.
  13. MCCROSKEY, W. J., MCALISTER, K. W., CARR, L. W., PUCCI, S. 1982 An experimental study of dynamic stall on advanced airfoil sections. NASA Technical Memorandum 84245, Vols. 1, 2 and 3, USAAVRADCOM TR-82-A-8.
  14. RAI,M.M.&CHAKRAVARTHY, S. R. 1988 An implicit form of the Osher upwind scheme. AIAA Journal 24, 735}743.
  15. SANZ,W.&PLATZER, M. F. 1998 On the Navier}Stokes calculation of separation bubbles with a new transition model. ASME Journal of ¹urbomachinery 120, 36}42.
  16. SCHEWE,G .&D EYHLE, H. 1996 Experiments on transonic #utter of a two-dimensional supercritical wing with emphasis on the non-linear-e!ect. Proceedings of the Royal Aeronautical Society Conference on ;nsteady Aerodynamics, London, U.K.
  17. STEGER,J.L.&WARMING, R.F. 1981 Flux vector splitting of the inviscid gas dynamic equations with applications to "nite-di!erence methods. Journal of Computational Physics 40, 263}293.
  18. TENG, N. H. 1987 The development of a computer code for the numerical solution of unsteady, inviscid and incompressible #ow over an airfoil. Master's thesis, Naval Postgraduate School, Monterey, CA, U.S.A.
  19. VAN DYKEN, R. D., EKATERINARIS, J. A., CHANDRASEKHARA, M. S., PLATZER, M. F. 1996 Analysis of compressible light dynamic stall #ow at transitional Reynolds numbers. AIAA Journal 34, 1420}1427.