Academia.eduAcademia.edu

Outline

Super-strong materials for temperatures exceeding 2000 °C

2017, Scientific Reports

https://doi.org/10.1038/SREP40730

Abstract

Ceramics based on group IV-V transition metal borides and carbides possess melting points above 3000 °C, are ablation resistant and are, therefore, candidates for the design of components of next generation space vehicles, rocket nozzle inserts, and nose cones or leading edges for hypersonic aerospace vehicles. As such, they will have to bear high thermo-mechanical loads, which makes strength at high temperature of great importance. While testing of these materials above 2000 °C is necessary to prove their capabilities at anticipated operating temperatures, literature reports are quite limited. Reported strength values for zirconium diboride (ZrB 2) ceramics can exceed 1 GPa at room temperature, but these values rapidly decrease, with all previously reported strengths being less than 340 MPa at 1500 °C or above. Here, we show how the strength of ZrB 2 ceramics can be increased to more than 800 MPa at temperatures in the range of 1500-2100 °C. These exceptional strengths are due to a core-shell microstructure, which leads to in-situ toughening and sub-grain refinement at elevated temperatures. Our findings promise to open a new avenue to designing materials that are super-strong at ultra-high temperatures.

References (41)

  1. Van Wie, D. M., Drewry, D. G. Jr., King, D. E. & Hudson, C. M. The hypersonic environment: Required operating conditions and design challenges. J. Mater. Sci. 39, 5915-24 (2004).
  2. Simonenko, E. P., Sevast'yanov, D. V., Simonenko, N. P., Sevast'yanov, V. G. & Kuznetsov, N. T. Promising ultra-high-temperature ceramic materials for aerospace applications. Russ. J. of Inorg. Chem. 58, 1669-1693 (2013).
  3. Wuchina, E. J., Opila, E., Opeka, M., Fahrenholtz, W. G. & Talmy, I. UHTCs: Ultra-high temperature ceramic materials for extreme environment applications. The Electrochem. Soc. Interf. 16, 30-36 (2007).
  4. Fahrenholtz, W. G., Wuchina, E. J., Lee, W. E. & Zhou, Y. (Eds.). Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications. John Wiley & Sons, Inc., Hoboken, NJ, 112-143 (2014).
  5. Guo, S. Q. Densification of ZrB 2 -Based composites and their mechanical and physical properties: a review. J. Europ. Ceram. Soc. 29, 995-1011 (2009).
  6. Guoa, S. Q., Nishimura, T., Mizuguchi, T. & Kagawa, Y. Mechanical properties of hot-pressed ZrB 2 -MoSi 2 -SiC composites. J. Europ. Ceram. Soc. 28, 1891-1898 (2008).
  7. Hu, P. & Wang, Z. Flexure strength and fracture behavior of ZrB 2 -SiC ultra-high temperature ceramic composites at 1800 °C. J. Europ. Ceram. Soc. 30, 1021-1026 (2010).
  8. Neuman, E. W., Hilmas, G. E. & Fahrenholtz, W. G. Strength of Zirconium Diboride to 2300 °C. J. Am. Ceram. Soc. 96 47-50 (2013).
  9. Neuman, E. W., Hilmas, G. E. & Fahrenholtz, W. G. Elevated temperature strength enhancement of ZrB 2 -30 vol% SiC ceramics by postsintering thermal annealing, J. Am. Ceram. Soc. 99, 962-970 (2016).
  10. Neuman, E. W., Hilmas, G. E. & Fahrenholtz, W. G. Mechanical behavior of zirconium diboride-silicon carbide ceramics at elevated temperature in air. J. Europ. Ceram. Soc. 33, (2013) 2889-2899.
  11. Neuman, E. W., Hilmas, G. E. & Fahrenholtz, W. G. Ultra-high temperature mechanical properties of a zirconium diboride-zirconium carbide ceramic, J. Am. Ceram. Soc. 99, 597-603 (2016).
  12. Zou, J., Zhang, G. J., Hu, C.-F., Nishimura, T., Sakka, Y., Vleugels, J. & Van der Biest O. Strong ZrB 2 -SiC ceramics at 1600 °C. J. Am. Ceram. Soc. 95, 874-878 (2010).
  13. Carney, C. M., Parthasarathy, T. A. & Cinibulk, M. K. Oxidation resistance of hafnium diboride ceramics with additions of silicon carbide and tungsten boride or tungsten carbide. J. Amer. Ceram. Soc. 94, 2600-2607 (2011).
  14. Zhang, S. C., Hilmas, G. E. & Fahrenholtz, W. G. Improved oxidation resistance of zirconium diboride by tungsten carbide additions. J. Am. Ceram. Soc. 91, 3530-3535 (2008).
  15. Ma, H. B., Man, Z. Y., Liu, J. X., Xu, F. F. & Zhang G.J. Microstructure, solid solution formation and high-temperature mechanical properties of ZrB 2 ceramics doped with 5 vol% WC. Mater. & Design 81, 133-140 (2015).
  16. Sha, J. J., Wei, Z. Q., Li, J., Zhang, Z. F., Yang, X. L., Zhang Y. C. & Dai J. X. Mechanical properties and toughening mechanism of WC-doped ZrB 2 -ZrSi 2 ceramic composites by hot pressing. Mater. & Design 62, 199-204 (2014).
  17. Monteverde F. & Silvestroni L. Combined effects of WC and SiC on densification and thermo-mechanical stability of ZrB 2 ceramics. Mater. and Design 109, 396-407 (2016).
  18. Silvestroni, L., Sciti, D., Monteverde, F., Stricker, K. & Kleebe, H.-J. Microstructure evolution of a W-doped ZrB 2 ceramic upon high- temperature oxidation. In press at J. Am. Ceram. Soc. (2017).
  19. Chan, L. L. Y., Scroger, M. G. & Phillips, B. Condensed Phase Relations in the Systems ZrO 2 -WO 2 -WO 3 and HfO 2 -WO 2 -WO 3 . J. Amer. Ceram. Soc. 50, 211-215 (1967).
  20. Neuman, E. W., Hilmas, G. E. & Fahrenholtz, W. G. Mechanical behavior of zirconium diboride-silicon carbide-boron carbide ceramics up to 2200 °C. J. Europ. Ceram. Soc. 35, 463-376 (2015).
  21. Cutler, R. A. Engineering Properties of Borides. In: Schneider, S. J. Jr. (ed.), Engineered Materials Handbook. ASM International, Materials Park, OH, pp. 787-803 (1991).
  22. Stevens, R. Engineering Properties of Zirconia. In: Schneider, S. J. Jr. (ed.), Engineered Materials Handbook. ASM International, Materials Park, OH, pp. 775-786 (1991).
  23. Evans, A. G. High Temperature failure mechanisms in Ceramic Polycrystals. In: Tressler, R. E. & Bradt, R. C. (eds.), Deformation of ceramic materials II. Plenum Press, New York, pp. 487-506 (1984).
  24. Ddalgleish, B. J., Johnson, S. M. & Evans, A. G. High-temperature failure of polycrystalline alumina: I, crack nucleation. J. Amer. Ceram. Soc. 67, 741-750 (1984).
  25. Lange, F. F. Compressive surface stresses developed in ceramics by an oxidation-induced phase-change. J. Am. Ceram. Soc. 63, 38-40 (1980).
  26. Evans, A. G. & Rana, A. High temperature failure mechanisms in ceramics. Acta Metall. 28, 128-141 (1979).
  27. Watts, J., Hilmas, G. E., Fahrenholtz, W. G., Brown, D. & Clausen, B. Measurement of thermal residual stresses in ZrB 2 -SiC composites. J. Europ. Ceram. Soc. 31, 1811-1820 (2011).
  28. Tiez, T. E. & Wilson, J. W. Behavior and Properties of Refractory Metals. Univ. of Tokyo Press, Tokyo, Japan (1965).
  29. Gludovatz, B., Faleschini, M., Wurster, S., Hofmann, A. & Pippan R. Influence of Microstructure on the Fracture Toughness of Tungsten Alloys. In: Hsia, K. J., Gökken, M., Pollock, T., Portella, P. D. & Moody, N. R. (eds.) Proceedings of Refractory Metals 2008: Properties of Refractory Metals. TMS, The Minerals, Metals and Materials Society (2008).
  30. Ashby, M. F., Blunt, F. J. & Bannister, M. Flow characteristics of highly constrained metal wires. Acta Metallurgica, 37, 1847-1857 (1989).
  31. Nawa, M., Yamazaki, K., Sekino, T. & Niihara K. Microstructure and mechanical behaviour of 3Y-TZP/Mo nanocomposites possessing a novel interpenetrated intragranular microstructure. J. Mater. Sci. 31, 2849-2858 (1996).
  32. Sekino, T., Yu, J. H., Choa, Y. H., Lee, J. S. & Niihara, K. Reduction and sintering of alumina/tungsten nanocomposites. J. Ceram. Soc. of Jap. 108, 541-547 (2000).
  33. Kleebe, H.-J., Lauterbach, S., Shabalala, T. C., Herrmann, M. & Sigalas, I. B 6 O: A correlation between mechanical properties and microstructure evolution upon Al 2 O 3 addition during hot pressing. J. Am. Ceram. Soc. 91, 569-575 (2008).
  34. Song, S. G., Vaidya, R. U., Zurek, A. K. & Gray G. T. Stacking faults in SiC particles and their effect on the fracture behavior of a 15 Vol Pct SiC/6061-AI matrix composite. Metall. and Mater. Trans. 27A, 459-465 (1996).
  35. Gifkins, R. C. Grain-boundary sliding and its accommodation during creep and superplasticity. Met. Transact. A, 7A, 1225-1232 (1976).
  36. Hirth, J. P. & Lothe, J. Theory of Dislocations, Wiley, New York, USA (1982).
  37. Cutard, T., VIatte, T., Feusier, G. & Benoit, W. Microstructure and high temperature mechanical properties of TiC 0.7 N 0.3 -Mo 2 C-Ni cermets. Mater. Sci. Eng. A, 209, 218-227 (1996).
  38. Abriata, J. P., Garcés, J. & Versaci R. The O-Zr (Oxygen-Zirconium) system. Bull. of Alloy Phase Diagr. 7, 116-124 (1986).
  39. Kosolapova, T. Y. (ed.), Handbook Of High Temperature Compounds: Properties, Production, Applications. Hemisphere Publishing Corporation, New York, p. 776 (1990).
  40. Mitchell, D. R. G. DiffTools: software tools for electron diffraction in digital micrograph. Microscopy Res. and Technique, 71, 588-593 (2008).
  41. Munz, D. G., Shannon, J. L. Jr. & Bubsey, R. T. Fracture Toughness Calculation from Maximum Load in Four Point Bend Tests of Chevron Notch Specimens. Int. J. Fract. 16, R137-R141 (1980).