Electrochemistry and nanotechnologies: The new challenges
2013, Comptes Rendus Chimie
https://doi.org/10.1016/J.CRCI.2012.12.009…
3 pages
1 file
Sign up for access to the world's latest research
Abstract
Electrochemistry and nanotechnologies: The new challenges E´lectrochimie et nanotechnologies : les nouveaux enjeux Avant-propos Ce numé ro thé matique est dé dié à la troisiè me É cole d'é té franco-allemande sur l'é lectrochimie et les nanotechnologies 1 qui s'est dé roulé e sur l'île de Porquerolles, Var (France) du 18 au 23 septembre 2011. Organisé e conjointement par le C'Nano PACA 2 et l'institut Fraunhofer pour la mé canique des maté riaux, cette manifestation a eu lieu dans le cadre des é coles thé matiques du CNRS et de l'université franco-allemande 3. L'é cole a reçu les soutiens gé né reux des université s d'Aix-Marseille,
Related papers
Current Opinion in Electrochemistry
(Spain) and the Head of the research group Theoretical and Applied Electrochemistry , where she has led more than 24 research projects and supervised 14 PhD Theses. Her scientific contributions cover the theoretical treatment of very different electrochemical problems including simple and complex charge transfer mechanisms at macroelectrodes and microelectrodes, molecular electrocatalysis as well as ion transfers across liquid|liquid interfaces. The result of her scientific activity has given rise, among other contributions, to more than 230 papers, one book and six book chapters.
Physical Review Letters, 1998
The lateral extension of electrochemically induced surface modifications is usually determined by the macroscopic size of the electrodes and the diffusion length of the reacting species. To overcome this constraint, we conducted an electrochemical reaction far from equilibrium. We applied short voltage pulses (#100 ns, up to 64 V) to a scanning tunneling microscope tip while imaging a Au(111) surface in concentrated electrolytes. They lead either to hole formation by anodic dissolution of the Au or to cathodic deposition of Cu islands (in the Cu 21 containing electrolyte), both of nanometer extension. [S0031-9007(98)
Electrochemistry has undergone significant transformations in the last few decades. It is not now the province of academics interested only in measuring thermodynamic properties of solutions or of industrialists using electrolysis or manufacturing batteries, with a huge gulf between them. It has become clear that these two, apparently distinct subjects, and others, have a common ground and they have grown towards each other, particularly as a result of research into the rates of electrochemical processes. Such an evolution is due to a number of factors, but principally the possibility of carrying out reproducible, dynamic experiments under an ever-increasing variety of conditions with reliable and sensitive instrumentation. This has enabled many studies of a fundamental and applied nature to be carried out.
Current Opinion in Electrochemistry, 2018
Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Modern Electrochemical Methods in Nano, Surface and Corrosion Science, 2014
Chemistry, 2024
Applied electrochemistry (AE) plays today an important role in a wide range of fields, including energy conversion and storage, processes, environment, (bio)analytical chemistry, and many others. Electrochemical synthesis is now proven as a promising pathway to avoid all disadvantages in terms of high energy consumption and high pollution, while electrochemical modeling becomes a powerful tool to understand complex systems and predict and optimize the electrochemical devices under various conditions, which reduce study time and cost. The vital role of electrochemistry will greatly be considered in the upcoming years, aiming to reduce carbon footprints and supporting the transition towards a green and more sustainable energy framework. This review article summarizes the recent advances in applied electrochemistry. It shows how this field has become an indispensable tool for innovation, progress, problem-solving in the modern world, and addressing societal challenges across diverse fields.
Electrochemistry: The Basics, with Examples , 2012
The aims of Grenoble Sciences are double:
2012
Electrochemistry is a discipline of wide scientific and technological interest. Scientifically, it explores the electrical properties of materials and especially the interfaces between different kinds of matter. Technologically, electrochemistry touches our lives in many ways that few fully appreciate; for example, materials as diverse as aluminum, nylon, and bleach are manufactured electrochemically, while the batteries that power all manner of appliances, vehicles, and devices are the products of electrochemical research. Other realms in which electrochemical science plays a crucial role include corrosion, the disinfection of water, neurophysiology, sensors, energy storage, semiconductors, the physics of thunderstorms, biomedical analysis, and so on. This book treats electrochemistry as a science in its own right, albeit resting firmly on foundations provided by chemistry, physics,
Electrochemistry is an interdisciplinary field that investigates the intricate relationship between chemical reactions and electrical energy. It is fundamentally the study of chemical processes that involve the movement of electrons, a phenomenon directly linked to the generation or consumption of electricity. This scientific discipline bridges the principles of chemistry and electricity, powering a vast array of modern technologies and natural processes, from energy storage devices to biological functions and corrosion prevention. Understanding electrochemistry is crucial for advancing clean energy, developing precise chemical measurements, and innovating across numerous industrial and biomedical sectors.
Electrochemistry and nanotechnologies: The new challenges
Électrochimie et nanotechnologies : les nouveaux enjeux
Avant-propos
Ce numéro thématique est dédié à la troisième École d’été franco-allemande sur l’électrochimie et les nanotechnologies 1 qui s’est déroulée sur l’île de Porquerolles, Var (France) du 18 au 23 septembre 2011. Organisée conjointement par le C’Nano PACA 2 et l’institut Fraunhofer pour la mécanique des matériaux, cette manifestation a eu lieu dans le cadre des écoles thématiques du CNRS et de l’université franco-allemande 3. L’école a reçu les soutiens généreux des universités d’Aix-Marseille, Versailles-SaintQuentin, Martin-Luther de Halle-Wittenberg (Allemagne), de la section PACA de la Société chimique de France, de la région PACA et de la société AMETEK France SAS.
Le comité pédagogique était composé de 12 professeurs et chercheurs de renom international dans les domaines de l’électrochimie et des nanotechnologies 4. Ces experts ont garanti le haut niveau de la manifestation et ont apporté un fort soutien scientifique aux jeunes participants. Cette école d’été a rassemblé plus de 70 scientifiques venant de 13 pays différents. Durant cette manifestation, 13 cours, six séminaires invités, 17 présentations «flash » et 31 posters ont été présentés. Cela a conduit, un an après, à l’édition de ce numéro spécial dans lequel 13 articles relatent les différents thèmes traités lors de cette manifestation.
Foreword
This thematic issue is devoted to the Third GermanFrench Summer School on Electrochemistry and Nanotechnologies 1 held on the island of Porquerolles, Var (France), September 18-23, 2011. This event has been jointly organized and supported by the C’Nano PACA 2 and the Fraunhofer Institute for the Mechanics of Materials. This summer school is part of the respective thematic school programs of the CNRS and the German-French University 3. The school has received the generous support from the Universities of Aix-Marseille, Versailles-Saint Quentin, Martin-Luther, Halle-Wittenberg (Germany), the PACA’s section of the French Chemical Society, the Regional council of PACA and AMETEK France SAS.
The pedagogic committee was constituted of 12 professors and researchers with international recognition in electrochemistry and nanotechnologies 4. These experts have insured the high quality level of this meeting and have provided a strong scientific support to the young participants. The summer school has gathered 70 scientists originating from 13 different countries. During this event, 13 keynote lectures, six oral presentations, 17 “flash” presentations and 31 posters have been presented. One year after this event, this special issue is edited in which the 13 articles reflect the large diversity of the summer school.
The lectures proposed during this thematic school tackled both fundamental concepts and practical aspects of various electrochemical approaches that led to applications in nanotechnologies. The summer school has associated scientists with different and complementary knowledge to give a clear and wide overview of the state-of-the-art of electrochemistry-induced new technologies. The active role of young researchers (“flash” presentations and posters) combined with the work of the pedagogic committee (lectures and discussions) have initiated strong interactions between different fields of research and have
1 http://www.nano-electrochem.org.
2 Centre de compétence en nanosciences et nanotechnologies Provence-Alpes-Côte d’Azur/Competency Center for Nanosciences et Nanotechnologies Provence-Alpes-Côte d’Azur.
3 Deutsch-Französische Hochschule/Université Franco-Allemande (DFH-UFA).
4 International pedagogic committee/Comité pédagogique international : E. Baranova (Canada), R. Boukherroub (France), L. Dick (Brazil), A. Hinsch (Germany), J. J. Kelly (USA), P. Knauth (France), G. G. Malliaras (FranceUSA), K. Nielsch (Germany), P. Poizot (France), M. J. Sailor (USA), R. Wreland-Lindstrom (Sweden), W. Wulfheckel (Germany). Summer SchoolOrganizers/Organisateurs de l’école d’été: T. Djenizian, M. Hanbücken, L. Santinacci, S. Schweizer, N. Simon, R. Wehrspohn. ↩︎1631-0748/ $ - see front matter © 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
http://dx.doi.org/10.1016/j.crci.2012.12.009 ↩︎
Fig. 1. Award winners for best presentations and best posters. From left to right: Loïc Assaud, Izabella Kaminska, Jana Panke, Olga Wittich, Magali Gauthier and Kyril Sliozberg.
Fig. 1. Lauréats des prix pour les meilleures présentations orales et les meilleures affiches. De gauche à droite, Loïc Assaud, Izabella Kaminska, Jana Panke, Olga Wittich, Magali Gauthier et Kyril Sliozberg.
Les enseignements dispensés durant cette école thématique ont abordé, à la fois, les concepts fondamentaux et les aspects pratiques de diverses approches électrochimiques ayant des applications dans les nanotechnologies. Cette manifestation a regroupé des scientifiques possédant des cultures différentes et complémentaires, donnant ainsi un aperçu large et précis de l’état de l’art des nouvelles technologies électrochimiques. Le rôle actif des jeunes chercheurs (présentations «flash » et affiches) combiné au travail du comité pédagogique (cours et discussions) ont provoqué de fortes interactions entre les différents domaines. Cette interdisciplinarité a induit l’établissement de nouveaux contacts et collaborations, mais aussi à la consolidation des travaux communs en cours. Les aspects fondamentaux ainsi que les applications émergentes dans trois domaines majeurs ont été développés pour décrire l’impact majeur de l’électrochimie dans les nanotechnologies : énergie et environnement ; matériaux innovants et biologie et santé.
been beneficial not only for establishing contacts and new collaborations for subsequent future projects, but also for fostering current collaborative works. Fundamental concepts as well as recent applications arising from three major fields of research have been developed, in order to give a broad overview of the deep impact of electrochemistry in nanotechnologies: energy and the environment; innovative materials; and biology and health.
In order to honor the involvement of the young scientists, prizes for the three best “flash” presentations and the three best posters have been awarded. The awardwinners, four ladies and two gentlemen, stand with their prize on the photograph (Fig. 1).
The organizers would like to acknowledge the academic and industrial partners for their support, the lecturers for their precious time and all the participants (Fig. 2) for their contributions to this great event! We are indebted to Pierre Braunstein, C. R. Chimie’s editor-in-chief, for his accepting to publish this special issue, and to Fatima Messadi for her help in managing the manuscripts.
Fig. 2. Participants to the Third German-French Summer School on Electrochemistry and Nanotechnologies. Porquerolles Island (September 18-23, 2011). Fig. 2. Participants à la troisième École d’été franco-allemande sur l’électrochimie et les nanotechnologies. Île de Porquerolles (18-23 septembre 2011).
Pour récompenser l’implication des jeunes chercheurs, les trois meilleures présentations «flash » ainsi que les meilleurs affiches ont reçu un prix. Les lauréats, quatre doctorantes et deux doctorants, posent avec leur prix sur la Fig. 1.
Les organisateurs souhaitent remercier les partenaires académiques et industriels pour leur soutien, les intervenants pour leur temps précieux et tous les participants (Fig. 2) pour leurs contributions au succès de cette manifestation. Nous sommes reconnaissant à Pierre Braunstein, éditeur en chef des C. R. Chimie pour avoir permis la publication de ce numéro spécial et à Fatima Messadi pour son aide dans la gestion des manuscrits.
Thierry Djenizian a,b
Margrit Hanbücken h,c
Lionel Santinacci h,e,c
Stefan Schweizer d
Nathalie Simon e
Ralf Wehrspohn d,f
Summer school organizers, invited editors
a Laboratory for Laser, Plasmas and Photonic Processes UMR CNRS 7341, Aix-Marseille University, Marseille, France
b Competency Center for Nanosciences et Nanotechnologies Provence-Alpes-Côte-d’Azur, GDR CNRS 3196, France
c Center for Interdisciplinary Nanoscience of Marseille UMR CNRS 7325, Aix-Marseille University, Marseille, France
d Chair for Microstructured Materials Martin-Luther University, Halle-Wittenberg, Germany
e Lavoisier Institute of Versailles UMR CNRS 8180, University of Versailles-Saint-Quentin, Versailles-Saint-Quentin, France
f Fraunhofer Institute for Mechanics of Materials, Halle, Germany
*Corresponding author. Center for Interdisciplinary Nanoscience of Marseille UMR CNRS 7325, Aix-Marseille University, 13288 Marseille cedex 9, France. E-mail address: lionel.santinacci@univ-amu.fr (L. Santinacci).