Academia.eduAcademia.edu

Outline

Universal Quantum Computing and Three-Manifolds

2018, Symmetry

https://doi.org/10.3390/SYM10120773

Abstract

A single qubit may be represented on the Bloch sphere or similarly on the 3-sphere S 3. Our goal is to dress this correspondence by converting the language of universal quantum computing (UQC) to that of 3-manifolds. A magic state and the Pauli group acting on it define a model of UQC as a positive operator-valued measure (POVM) that one recognizes to be a 3-manifold M 3. More precisely, the d-dimensional POVMs defined from subgroups of finite index of the modular group PSL(2, Z) correspond to d-fold M 3-coverings over the trefoil knot. In this paper, we also investigate quantum information on a few 'universal' knots and links such as the figure-of-eight knot, the Whitehead link and Borromean rings, making use of the catalog of platonic manifolds available on the software SnapPy. Further connections between POVMs based UQC and M 3 's obtained from Dehn fillings are explored.

References (50)

  1. Thurston, W.P. Three-Dimensional Geometry and Topology; Princeton University Press: Princeton, NJ, USA, 1997; Volume 1.
  2. Yu Kitaev, A. Fault-tolerant quantum computation by anyons. Ann. Phys. 2003, 303, 2-30. [CrossRef]
  3. Nayak, C.; Simon, S.; Stern, A.; Freedman, M.; Sarma, S.D. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 2008, 80, 1083. [CrossRef]
  4. Wang, Z. Topological Quantum Computation; American Mathematical Soc.: Providence, RI, USA, 2010.
  5. Pachos, J.K. Introduction to Topological Quantum Computation; Cambridge University Press: Cambridge, UK, 2012.
  6. Kauffman, L.H.; Baadhio, R.L. Quantum Topology; Series on Knots and Everything; World Scientific: Singapore, 1993.
  7. Kauffman, L.H. Knot logic and topological quantum computing with Majorana fermions. In Linear and Algebraic Structures in Quantum Computing; Lecture Notes in Logic 45; Chubb, J., Eskandarian, A., Harizanov, V., Eds.; Cambridge Univ. Press: Cambridge, UK, 2016.
  8. Seiberg, N.; Senthil, T.; Wang, C.; Witten, E. A duality web in 2 + 1 dimensions and condensed matter physics. Ann. Phys. 2016, 374, 395-433. [CrossRef]
  9. Gang, D.; Tachikawa, Y.; Yonekura, K. Smallest 3d hyperbolic manifolds via simple 3d theories. Phys. Rev. D 2017, 96, 061701(R). [CrossRef]
  10. Lim, N.C.; Jackson, S.E. Molecular knots in biology and chemistry. J. Phys. Condens. Matter 2015, 27, 354101. [CrossRef] [PubMed]
  11. Irwin, K. Toward a Unification of Physics and Number Theory. Available online: https://www.researchgate. net/publication/314209738 (accessed on 1 January 2018).
  12. Bravyi, S.; Kitaev, A. Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. 2005, A71, 022316. [CrossRef]
  13. Veitch, V.; Mousavian, S.A.; Gottesman, D.; Emerson, J. The resource theory of stabilizer quantum computation. New J. Phys. 2014, 16, 013009. [CrossRef]
  14. Planat, M.; Haq, R.U. The magic of universal quantum computing with permutations. Adv. Math. Phys. 2017, 217, 5287862. [CrossRef]
  15. Planat, M.; Gedik, Z. Magic informationally complete POVMs with permutations. R. Soc. Open Sci. 2017, 4, 170387. [CrossRef]
  16. Planat, M. The Poincaré half-plane for informationally complete POVMs. Entropy 2018, 20, 16. [CrossRef]
  17. Milnor, J. The Poincaré Conjecture 99 Years Later: A Progress Report (The Clay Mathematics Institute 2002 Annual Report, 2003). Available online: http://www.math.sunysb.edu/$\sim$jack/PREPRINTS/poiproof. pdf (accessed on 1 January 2018).
  18. Planat, M. On the geometry and invariants of qubits, quartits and octits. Int. J. Geom. Methods Mod. Phys. 2011, 8, 303-313. [CrossRef]
  19. Manton, N.S. Connections on discrete fiber bundles. Commun. Math. Phys. 1987, 113, 341-351. [CrossRef]
  20. Mosseri, R.; Dandoloff, R. Geometry of entangled states, Bloch spheres and Hopf fibrations. Int. J. Phys. A Math. Gen. 2001, 34, 10243. [CrossRef]
  21. Nieto, J.A. Division-Algebras/Poincare-Conjecture Correspondence. J. Mod. Phys. 2013, 4, 32-36. [CrossRef]
  22. Fang, F.; Hammock, D.; Irwin, K. Methods for calculating empires in quasicrystals. Crystals 1997, 7, 304. [CrossRef]
  23. Sen, A.; Aschheim, R.; Irwin, K. Emergence of an aperiodic Dirichlet space from the tetrahedral units of an icosahedral internal space. Mathematics 2017, 5, 29.
  24. Adams, C.C. The Knot Book, An Elementary Introduction to the Mathematical Theory of Knots; W. H. Freeman and Co.: New York, NY, USA, 1994.
  25. Fominikh, E.; Garoufalidis, S.; Goerner, M.; Tarkaev, V.; Vesnin, A. A census of tethahedral hyperbolic manifolds. Exp. Math. 2016, 25, 466-481. [CrossRef]
  26. Hilden, H.M.; Lozano, M.T.; Montesinos, J.M.; Whitten, W.C. On universal groups and three-manifolds. Invent. Math. 1987, 87, 441-445. [CrossRef]
  27. Mednykh, A.D. A new method for counting coverings over manifold with finitely generated fundamental group. Dokl. Math. 2006, 74, 498-502. [CrossRef]
  28. Culler, M.; Dunfield, N.M.; Goerner, M.; Weeks, J.R. SnapPy, a Computer Program for Studying the Geometry and Topology of 3-Manifolds. Available online: http://snappy.computop.org (accessed on 1 January 2018).
  29. Hilden, H.M.; Lozano, M.T.; Montesinoos, J.M. On knots that are universal. Topology 1985, 24, 499-504. [CrossRef]
  30. Fuchs, C.A. On the quantumness of a Hibert space. Quant. Inf. Comp. 2004, 4, 467-478.
  31. Appleby, M.; Chien, T.Y.; Flammia, S.; Waldron, S. Constructing Exact Symmetric Informationally Complete Measurements from Numerical Solutions. arXiv 2018, arXiv:1703.05981.
  32. Rolfsen, D. Knots and Links; Mathematics Lecture Series 7; Publish of Perish: Houston, TX, USA, 1990.
  33. Milnor, J. On the 3-dimensional Brieskorn manifolds M(p, q, r). In Knots, Groups and 3-Manifolds;
  34. Neuwirth, L.P., Ed.; Princeton Univ. Press: Princeton, NJ, USA, 1975; pp. 175-225.
  35. Bosma, W.; Cannon, J.J.; Fieker, C.; Steel, A. Eds. Handbook of Magma Functions; University of Sydney: Sydney, Australia, 2017.
  36. Hempel, J. The lattice of branched covers over the Figure-eight knot. Topol. Appl. 1990, 34, 183-201. [CrossRef]
  37. Haraway, R.C. Determining hyperbolicity of compact orientable 3-manifolds with torus boundary. arXiv 2014, arXiv:1410.7115.
  38. Ballas, S.A.; Danciger, J.; Lee, G.S. Convex projective structures on non-hyperbolic three-manifolds. arXiv 2018, arXiv:1508.04794.
  39. Gabai, D. The Whitehead manifold is a union of two Euclidean spaces. J. Topol. 2011, 4, 529-534. [CrossRef]
  40. Akbulut, S.; Larson, K. Brieskorn spheres bounding rational balls. arXiv 2017, arXiv:1704.07739.
  41. Conder, M.; Martin, G.; Torstensson, A. Maximal symmetry groups of hyperbolic 3-manifolds. N. Z. J. Math. 2006, 35, 3762.
  42. Gordon, C.M. Dehn Filling: A survey, Knot Theory; Banach Center Publ.: Warsaw, Poland, 1998; Volume 42, pp. 129-144.
  43. Sirag, S.-P. ADEX Theory, How the ADE Coxeter Graphs Unify Mathematics and Physics; World Scientific: Singapore, 2016.
  44. Kirby, R.C.; Scharlemann, M.G. Eight faces of the Poincaré homology 3-sphere. In Geometric Topology; Acad. Press: New York, NY, USA, 1979; pp. 113-146.
  45. Wu, Y. Seifert fibered surgery on Montesinos knots. arXiv 2012, arXiv:1207.0154.
  46. Chan, K.T.; Zainuddin, H.; Atan, K.A.M.; Siddig, A.A. Computing Quantum Bound States on Triply Punctured Two-Sphere Surface. Chin. Phys. Lett. 2016, 33, 090301. [CrossRef]
  47. Aurich, R.; Steiner, F.; Then, H. Numerical computation of Maass waveforms and an application to cosmology. In Hyperbolic Geometry and Applications in Quantum Chaos and Cosmology; Jens, B., Frank, S., Eds.; Cambridge Univ. Press: Cambridge, UK, 2012.
  48. Asselmeyer-Maluga, T. Smooth quantum gravity: Exotic smoothness and Quantum gravity. In At the Frontier of Spacetime Scalar-Tensor Theory, Bells Inequality, Machs Principle, Exotic Smoothness; Fundamental Theories of Physics Book Series (FTP);
  49. Asselmeyer-Maluga, T., Ed.; Springer: Cham, Switzerland, 2016; pp. 247-308.
  50. Planat, M.; Aschheim, R.; Amaral, M.M.; Irwin, K. Quantum computing with Bianchi groups. arXiv 2018, arXiv:1808.06831.