Abstract
A single qubit may be represented on the Bloch sphere or similarly on the 3-sphere S 3. Our goal is to dress this correspondence by converting the language of universal quantum computing (UQC) to that of 3-manifolds. A magic state and the Pauli group acting on it define a model of UQC as a positive operator-valued measure (POVM) that one recognizes to be a 3-manifold M 3. More precisely, the d-dimensional POVMs defined from subgroups of finite index of the modular group PSL(2, Z) correspond to d-fold M 3-coverings over the trefoil knot. In this paper, we also investigate quantum information on a few 'universal' knots and links such as the figure-of-eight knot, the Whitehead link and Borromean rings, making use of the catalog of platonic manifolds available on the software SnapPy. Further connections between POVMs based UQC and M 3 's obtained from Dehn fillings are explored.
References (50)
- Thurston, W.P. Three-Dimensional Geometry and Topology; Princeton University Press: Princeton, NJ, USA, 1997; Volume 1.
- Yu Kitaev, A. Fault-tolerant quantum computation by anyons. Ann. Phys. 2003, 303, 2-30. [CrossRef]
- Nayak, C.; Simon, S.; Stern, A.; Freedman, M.; Sarma, S.D. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 2008, 80, 1083. [CrossRef]
- Wang, Z. Topological Quantum Computation; American Mathematical Soc.: Providence, RI, USA, 2010.
- Pachos, J.K. Introduction to Topological Quantum Computation; Cambridge University Press: Cambridge, UK, 2012.
- Kauffman, L.H.; Baadhio, R.L. Quantum Topology; Series on Knots and Everything; World Scientific: Singapore, 1993.
- Kauffman, L.H. Knot logic and topological quantum computing with Majorana fermions. In Linear and Algebraic Structures in Quantum Computing; Lecture Notes in Logic 45; Chubb, J., Eskandarian, A., Harizanov, V., Eds.; Cambridge Univ. Press: Cambridge, UK, 2016.
- Seiberg, N.; Senthil, T.; Wang, C.; Witten, E. A duality web in 2 + 1 dimensions and condensed matter physics. Ann. Phys. 2016, 374, 395-433. [CrossRef]
- Gang, D.; Tachikawa, Y.; Yonekura, K. Smallest 3d hyperbolic manifolds via simple 3d theories. Phys. Rev. D 2017, 96, 061701(R). [CrossRef]
- Lim, N.C.; Jackson, S.E. Molecular knots in biology and chemistry. J. Phys. Condens. Matter 2015, 27, 354101. [CrossRef] [PubMed]
- Irwin, K. Toward a Unification of Physics and Number Theory. Available online: https://www.researchgate. net/publication/314209738 (accessed on 1 January 2018).
- Bravyi, S.; Kitaev, A. Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. 2005, A71, 022316. [CrossRef]
- Veitch, V.; Mousavian, S.A.; Gottesman, D.; Emerson, J. The resource theory of stabilizer quantum computation. New J. Phys. 2014, 16, 013009. [CrossRef]
- Planat, M.; Haq, R.U. The magic of universal quantum computing with permutations. Adv. Math. Phys. 2017, 217, 5287862. [CrossRef]
- Planat, M.; Gedik, Z. Magic informationally complete POVMs with permutations. R. Soc. Open Sci. 2017, 4, 170387. [CrossRef]
- Planat, M. The Poincaré half-plane for informationally complete POVMs. Entropy 2018, 20, 16. [CrossRef]
- Milnor, J. The Poincaré Conjecture 99 Years Later: A Progress Report (The Clay Mathematics Institute 2002 Annual Report, 2003). Available online: http://www.math.sunysb.edu/$\sim$jack/PREPRINTS/poiproof. pdf (accessed on 1 January 2018).
- Planat, M. On the geometry and invariants of qubits, quartits and octits. Int. J. Geom. Methods Mod. Phys. 2011, 8, 303-313. [CrossRef]
- Manton, N.S. Connections on discrete fiber bundles. Commun. Math. Phys. 1987, 113, 341-351. [CrossRef]
- Mosseri, R.; Dandoloff, R. Geometry of entangled states, Bloch spheres and Hopf fibrations. Int. J. Phys. A Math. Gen. 2001, 34, 10243. [CrossRef]
- Nieto, J.A. Division-Algebras/Poincare-Conjecture Correspondence. J. Mod. Phys. 2013, 4, 32-36. [CrossRef]
- Fang, F.; Hammock, D.; Irwin, K. Methods for calculating empires in quasicrystals. Crystals 1997, 7, 304. [CrossRef]
- Sen, A.; Aschheim, R.; Irwin, K. Emergence of an aperiodic Dirichlet space from the tetrahedral units of an icosahedral internal space. Mathematics 2017, 5, 29.
- Adams, C.C. The Knot Book, An Elementary Introduction to the Mathematical Theory of Knots; W. H. Freeman and Co.: New York, NY, USA, 1994.
- Fominikh, E.; Garoufalidis, S.; Goerner, M.; Tarkaev, V.; Vesnin, A. A census of tethahedral hyperbolic manifolds. Exp. Math. 2016, 25, 466-481. [CrossRef]
- Hilden, H.M.; Lozano, M.T.; Montesinos, J.M.; Whitten, W.C. On universal groups and three-manifolds. Invent. Math. 1987, 87, 441-445. [CrossRef]
- Mednykh, A.D. A new method for counting coverings over manifold with finitely generated fundamental group. Dokl. Math. 2006, 74, 498-502. [CrossRef]
- Culler, M.; Dunfield, N.M.; Goerner, M.; Weeks, J.R. SnapPy, a Computer Program for Studying the Geometry and Topology of 3-Manifolds. Available online: http://snappy.computop.org (accessed on 1 January 2018).
- Hilden, H.M.; Lozano, M.T.; Montesinoos, J.M. On knots that are universal. Topology 1985, 24, 499-504. [CrossRef]
- Fuchs, C.A. On the quantumness of a Hibert space. Quant. Inf. Comp. 2004, 4, 467-478.
- Appleby, M.; Chien, T.Y.; Flammia, S.; Waldron, S. Constructing Exact Symmetric Informationally Complete Measurements from Numerical Solutions. arXiv 2018, arXiv:1703.05981.
- Rolfsen, D. Knots and Links; Mathematics Lecture Series 7; Publish of Perish: Houston, TX, USA, 1990.
- Milnor, J. On the 3-dimensional Brieskorn manifolds M(p, q, r). In Knots, Groups and 3-Manifolds;
- Neuwirth, L.P., Ed.; Princeton Univ. Press: Princeton, NJ, USA, 1975; pp. 175-225.
- Bosma, W.; Cannon, J.J.; Fieker, C.; Steel, A. Eds. Handbook of Magma Functions; University of Sydney: Sydney, Australia, 2017.
- Hempel, J. The lattice of branched covers over the Figure-eight knot. Topol. Appl. 1990, 34, 183-201. [CrossRef]
- Haraway, R.C. Determining hyperbolicity of compact orientable 3-manifolds with torus boundary. arXiv 2014, arXiv:1410.7115.
- Ballas, S.A.; Danciger, J.; Lee, G.S. Convex projective structures on non-hyperbolic three-manifolds. arXiv 2018, arXiv:1508.04794.
- Gabai, D. The Whitehead manifold is a union of two Euclidean spaces. J. Topol. 2011, 4, 529-534. [CrossRef]
- Akbulut, S.; Larson, K. Brieskorn spheres bounding rational balls. arXiv 2017, arXiv:1704.07739.
- Conder, M.; Martin, G.; Torstensson, A. Maximal symmetry groups of hyperbolic 3-manifolds. N. Z. J. Math. 2006, 35, 3762.
- Gordon, C.M. Dehn Filling: A survey, Knot Theory; Banach Center Publ.: Warsaw, Poland, 1998; Volume 42, pp. 129-144.
- Sirag, S.-P. ADEX Theory, How the ADE Coxeter Graphs Unify Mathematics and Physics; World Scientific: Singapore, 2016.
- Kirby, R.C.; Scharlemann, M.G. Eight faces of the Poincaré homology 3-sphere. In Geometric Topology; Acad. Press: New York, NY, USA, 1979; pp. 113-146.
- Wu, Y. Seifert fibered surgery on Montesinos knots. arXiv 2012, arXiv:1207.0154.
- Chan, K.T.; Zainuddin, H.; Atan, K.A.M.; Siddig, A.A. Computing Quantum Bound States on Triply Punctured Two-Sphere Surface. Chin. Phys. Lett. 2016, 33, 090301. [CrossRef]
- Aurich, R.; Steiner, F.; Then, H. Numerical computation of Maass waveforms and an application to cosmology. In Hyperbolic Geometry and Applications in Quantum Chaos and Cosmology; Jens, B., Frank, S., Eds.; Cambridge Univ. Press: Cambridge, UK, 2012.
- Asselmeyer-Maluga, T. Smooth quantum gravity: Exotic smoothness and Quantum gravity. In At the Frontier of Spacetime Scalar-Tensor Theory, Bells Inequality, Machs Principle, Exotic Smoothness; Fundamental Theories of Physics Book Series (FTP);
- Asselmeyer-Maluga, T., Ed.; Springer: Cham, Switzerland, 2016; pp. 247-308.
- Planat, M.; Aschheim, R.; Amaral, M.M.; Irwin, K. Quantum computing with Bianchi groups. arXiv 2018, arXiv:1808.06831.