Network-based fMRI-neurofeedback training of sustained attention
NeuroImage
https://doi.org/10.1016/J.NEUROIMAGE.2020.117194Abstract
The brain regions supporting sustained attention (sustained attention network; SAN) and mind-wandering (default-mode network; DMN) have been extensively studied. Nevertheless, this knowledge has not yet been translated into advanced brain-based attention training protocols. Here, we used network-based real-time functional magnetic resonance imaging (fMRI) to provide healthy individuals with information about current activity levels in SAN and DMN. Specifically, 15 participants trained to control the difference between SAN and DMN hemodynamic activity and completed behavioral attention tests before and after neurofeedback training. Through training, participants improved controlling the differential SAN-DMN feedback signal, which was accomplished mainly through deactivating DMN. After training, participants were able to apply learned self-regulation of the differential feedback signal even when feedback was no longer available (i.e., during transfer runs). The neurofeedback group improved in sustained attention after training, although this improvement was temporally limited and rarely exceeded mere practice effects that were controlled by a test-retest behavioral control group. The learned self-regulation and the behavioral outcomes suggest that neurofeedback training of differential SAN and DMN activity has the potential to become a non-invasive and non-pharmacological tool to enhance attention and mitigate specific attention deficits.
References (97)
- Alegria, A.A., Wulff, M., Brinson, H., Barker, G.J., Norman, L.J., Brandeis, D., Stahl, D., David, A.S., Taylor, E., Giampietro, V., Rubia, K., 2017. Real-time fMRI neurofeedback in adolescents with attention deficit hyperactivity disorder. Hum. Brain Mapp. 38, 3190-3209. https://doi.org/10.1002/hbm.23584 .
- Amiez, C., Sallet, J., Procyk, E., Petrides, M., 2012. Modulation of feedback related activity in the rostral anterior cingulate cortex during trial and error exploration. Neuroimage 63, 1078-1090. https://doi.org/10.1016/j.neuroimage.2012.06.023 .
- Anderson, K., Deane, K., Lindley, D., Loucks, B., Veach, E., 2012. The effects of time of day and practice on cognitive abilities: the PEBL Tower of London, Trail-making, and Switcher tasks.
- Andrews-Hanna, J.R., Smallwood, J., Spreng, R.N., 2014. The default network and self- generated thought: component processes, dynamic control, and clinical relevance. Ann. N. Y. Acad. Sci. 1316, 29-52. https://doi.org/10.1111/nyas.12360 .
- Anobile, G., Stievano, P., Burr, D., 2013. Visual sustained attention and numerosity sensi- tivity correlate with math achievement in children. J. Exp. Child Psychol. 116, 380- 391. https://doi.org/10.1016/j.jecp.2013.06.006 .
- Bellgrove, M.A., Hawi, Z., Kirley, A., Gill, M., Robertson, I.H., 2005. Dissect- ing the attention deficit hyperactivity disorder (ADHD) phenotype: Sustained attention, response variability and spatial attentional asymmetries in relation to dopamine transporter (DAT1) genotype. Neuropsychologia 43, 1847-1857. https://doi.org/10.1016/j.neuropsychologia.2005.03.011 .
- Berteau-Pavy, D. , Raber, J. , Piper, B. , 2011. Contributions of Age, But Not Sex, to Mental Rotation Performance in a Community Sample PEBL Technical Report Series .
- Brefczynski-Lewis, J.A., Lutz, A., Schaefer, H.S., Levinson, D.B., Davidson, R.J., 2007. Neural correlates of attentional expertise in long-term meditation practitioners. Proc. Natl. Acad. Sci. 104, 11483-11488. https://doi.org/10.1073/pnas.0606552104 .
- Brett, M. , Anton, J.-L. , Valabregue, R. , Poline, J.-B. , 2002. Region of interest analysis using an SPM toolbox. In: 8th International Conference on Functional Mapping of the Human Brain. Sendai, p. 497 .
- Brewer, J.A., Worhunsky, P.D., Gray, J.R., Tang, Y.-Y., Weber, J., Kober, H., 2011. Meditation experience is associated with differences in default mode network activity and connectivity. Proc. Natl. Acad. Sci. 108, 20254-20259. https://doi.org/10.1073/pnas.1112029108 .
- Broadbent, D.E., Cooper, P.F., FitzGerald, P., Parkes, K.R., 1982. The Cognitive Fail- ures Questionnaire (CFQ) and its correlates. Br. J. Clin. Psychol. 21, 1-16. https://doi.org/10.1111/j.2044-8260.1982.tb01421.x .
- Cohen, J., Cohen, P., 1983. Applied Multiple Regression/correlation Analysis for the Be- havioral Sciences. Taylor & Francis Group https://doi.org/10.4324/9780203774441 .
- Conners, C.K., Epstein, J.N., Angold, A., Klaric, J., 2003. Continuous performance test performance in a normative epidemiological sample. J. Abnorm. Child Psychol. 31, 555-562. https://doi.org/10.1023/A:1025457300409 .
- Corbetta, M., Shulman, G.L., 2002. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201-215. https://doi.org/10.1038/nrn755 .
- Cunnington, R., Windischberger, C., Deecke, L., Moser, E., 2002. The preparation and execution of self-initiated and externally-triggered movement: a study of event-related fMRI. Neuroimage 15, 373-385. https://doi.org/10.1006/nimg.2001.0976 . deBettencourt, M.T., Cohen, J.D., Lee, R.F., Norman, K.A., Turk-Browne, N.B., Co- hen, D, J., Lee, R.F., A Norman, K., B Turk-Browne, N., 2015. Closed-loop training of attention with real-time brain imaging. Nat. Neurosci. 18, 470-478. https://doi.org/10.1038/nn.3940 .
- Dosenbach, N.U.F., Fair, D.A., Cohen, A.L., Schlaggar, B.L., Petersen, S.E., 2008. A dual-networks architecture of top-down control. Trends Cognit. Sci. 12, 99-105. https://doi.org/10.1016/j.tics.2008.01.001 .
- Dosenbach, N.U.F., Visscher, K.M., Palmer, E.D., Miezin, F.M., Wenger, K.K., Kang, H.C., Burgund, E.D., Grimes, A.L., Schlaggar, B.L., Petersen, S.E., 2006. A core system for the implementation of task sets. Neuron 50, 799-812. https://doi.org/10.1016/j.neuron.2006.04.031 .
- Emmert, K., Kopel, R., Koush, Y., Maire, R., Senn, P., Van De Ville, D., Haller, S., 2017. Continuous vs. intermittent neurofeedback to regulate auditory cortex activity of tin- nitus patients using real-time fMRI -a pilot study. NeuroImage Clin. 14, 97-104. https://doi.org/10.1016/j.nicl.2016.12.023 .
- Eysenck, M.W., Derakshan, N., Santos, R., Calvo, M.G., 2007. Anxiety and cognitive performance: attentional control theory. Emotion 7, 336-353. https://doi.org/10.1037/1528-3542.7.2.336 .
- Falahpour, M., Chang, C., Wong, C.W., Liu, T.T., 2018. Template-based predic- tion of vigilance fluctuations in resting-state fMRI. Neuroimage 174, 317-327. https://doi.org/10.1016/j.neuroimage.2018.03.012 .
- Fan, J., McCandliss, B.D., Sommer, T., Raz, A., Posner, M.I., 2002. Testing the effi- ciency and independence of attentional networks. J. Cognit. Neurosci. 14, 340-347. https://doi.org/10.1162/089892902317361886 .
- Finn, E.S., Shen, X., Scheinost, D., Rosenberg, M.D., Huang, J., Chun, M.M., Pa- pademetris, X., Constable, R.T., 2015. Functional connectome fingerprinting: iden- tifying individuals using patterns of brain connectivity. Nat. Neurosci. 1-11. https://doi.org/10.1038/nn.4135 .
- Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., Raichle, M.E., 2005. The human brain is intrinsically organized into dynamic, anti- correlated functional networks. Proc. Natl. Acad. Sci. 102, 9673-9678. https://doi.org/10.1073/pnas.0504136102 .
- Garrison, K.A., Scheinost, D., Worhunsky, P.D., Elwafi, H.M., Thornhill, T.A., Thomp- son, E., Saron, C., Desbordes, G., Kober, H., Hampson, M., Gray, J.R., Consta- ble, R.T., Papademetris, X., Brewer, J.A., 2013. Real-time fMRI links subjective ex- perience with brain activity during focused attention. Neuroimage 81, 110-118. https://doi.org/10.1016/j.neuroimage.2013.05.030 .
- Green, M., 1996. What are the functional consequences of neurocog- nitive deficits in schizophrenia? Am. J. Psychiatry 153, 321-330. https://doi.org/10.1176/ajp.153.3.321 .
- Greicius, M.D., Krasnow, B., Reiss, A.L., Menon, V., 2003. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. 100, 253-258. https://doi.org/10.1073/pnas.0135058100 .
- Gusnard, D.A., Akbudak, E., Shulman, G.L., Raichle, M.E., 2001. Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function. Proc. Natl. Acad. Sci. 98, 4259-4264. https://doi.org/10.1073/pnas.071043098 .
- Harmelech, T., Friedman, D., Malach, R., 2015. Differential magnetic reso- nance neurofeedback modulations across extrinsic (Visual) and intrinsic (default-mode) nodes of the human cortex. J. Neurosci. 35, 2588-2595. https://doi.org/10.1523/jneurosci.3098-14.2015 .
- Harris, I.M., Egan, G.F., Sonkkila, C., Tochon-Danguy, H.J., Paxinos, G., Watson, J.D.G., 2000. Selective right parietal lobe activation during mental rotation: a parametric PET study. Brain 123, 65-73. https://doi.org/10.1093/brain/123.1.65 .
- Haugg, A. , Sladky, R. , Skouras, S. , McDonald, A. , Craddock, C. , Kirschner, M. , Her- dener, M. , Koush, Y. , Papoutsi, M. , Keynan, J.N. , Hendler, T. , Kadosh, K.C. , Zich, C. , MacInnes, J. , Adcock, A. , Dickerson, K. , Chen, N.-K. , Young, K. , Bodurka, J. , Yao, S. , Becker, B. , Auer, T. , Schweizer, R. , Pamplona, G. , Emmert, K. , Haller, S. , Van De Ville, D. , Blefari, M.-L. , Kim, D.-Y. , Lee, J.-H. , Marins, T. , Fukuda, M. , Sorger, B. , Kamp, T. , Liew, S.-L. , Veit, R. , Spetter, M. , Weiskopf, N. , Scharnowski, F. , 2020. Can we predict real-time fMRI neurofeedback learning success from pre-training brain ac- tivity? Hum. Brain Mapp. .
- Haugg, A. , Steryl, D. , Götzendorfer, S. , Lor, C. , Nicholson, A. , Sladky, R. , Skouras, S. , McDonald, A. , Craddock, C. , Hellrung, L. , Kirschner, M. , Herdener, M. , Koush, Y. , Keynan, J. , Hendler, T. , Kadosh, K. , Zich, C. , MacInnes, J. , Adcock, A. , Dickerson, K. , Chen, N.-K. , Young, K. , Bodurka, J. , Marxen, M. , Shuxia, Y. , Becker, B. , Auer, T. , Schweizer, R. , Pamplona, G. , Lanius, R. , Emmert, K. , Haller, S. , Van De Ville, D. , Kim, D.-Y. , Lee, J.-H. , Marins, T. , Fukuda, M. , Sorger, B. , Kamp, T. , Papoutsi, M. , Liew, S.-L. , Veit, R. , Spetter, M. , Weiskopf, N. , Scharnowski, F. , 2019. Factors influ- encing neurofeedback learning -a machine learning mega-analysis. Real-Time Func- tional Imaging and Neurofeedback. Maastricht, The Netherlands .
- Hellrung, L., Dietrich, A., Hollmann, M., Pleger, B., Kalberlah, C., Roggenhofer, E., Vill- ringer, A., Horstmann, A., 2018. Intermittent compared to continuous real-time fMRI neurofeedback boosts control over amygdala activation. Neuroimage 166, 198-208. https://doi.org/10.1016/j.neuroimage.2017.10.031 .
- Helton, W.S., Hollander, T.D., Warm, J.S., Tripp, L.D., Parsons, K., Matthews, G., Dember, W.N., Parasuraman, R., Hancock, P.a, 2007. The abbreviated vigi- lance task and cerebral hemodynamics. J. Clin. Exp. Neuropsychol. 29, 545-552. https://doi.org/10.1080/13803390600814757 .
- Hinds, O., Ghosh, S., Thompson, T.W., Yoo, J.J., Whitfield-Gabrieli, S., Tri- antafyllou, C., Gabrieli, J.D.E., 2011. Computing moment-to-moment BOLD activation for real-time neurofeedback. Neuroimage 54, 361-368. https://doi.org/10.1016/j.neuroimage.2010.07.060 .
- Hinds, O., Thompson, T.W., Ghosh, S., Yoo, J.J., Whitfield-Gabrieli, S., Triantafyllou, C., Gabrieli, J.D.E., 2013. Roles of default-mode network and supplementary motor area in human vigilance performance: evidence from real-time fMRI. J. Neurophysiol. 109, 1250-1258. https://doi.org/10.1152/jn.00533.2011 .
- Hwang, J., Castelli, D.M., Gonzalez-Lima, F., 2017. The positive cognitive im- pact of aerobic fitness is associated with peripheral inflammatory and brain- derived neurotrophic biomarkers in young adults. Physiol. Behav. 179, 75-89. https://doi.org/10.1016/j.physbeh.2017.05.011 .
- Jang, J.H., Jung, W.H., Kang, D.H., Byun, M.S., Kwon, S.J., Choi, C.H., Kwon, J.S., 2011. Increased default mode network connectivity associated with meditation. Neurosci. Lett. 487, 358-362. https://doi.org/10.1016/j.neulet.2010.10.056 .
- Johnson, K.A., Hartwell, K., Lematty, T., Borckardt, J., Morgan, P.S., Govindarajan, K., Brady, K., George, M.S., 2012. Intermittent "Real-time " fMRI feedback is superior to continuous presentation for a motor imagery task: a pilot study. J. Neuroimaging 22, 58-66. https://doi.org/10.1111/j.1552-6569.2010.00529.x .
- Josipovic, Z., Dinstein, I., Weber, J., Heeger, D.J., 2012. Influence of medita- tion on anti-correlated networks in the brain. Front. Hum. Neurosci. 5, 1-11. https://doi.org/10.3389/fnhum.2011.00183 .
- Kasper, L., Bollmann, S., Diaconescu, A.O., Hutton, C., Heinzle, J., Iglesias, S., Hauser, T.U., Sebold, M., Manjaly, Z.-M., Pruessmann, K.P., Stephan, K.E., 2017. The PhysIO toolbox for modeling physiological noise in fMRI data. J. Neurosci. Methods 276, 56-72. https://doi.org/10.1016/j.jneumeth.2016.10.019 .
- Kelly, A.M., Uddin, L.Q., Biswal, B.B., Castellanos, F.X., Milham, M.P., 2008. Competition between functional brain networks mediates behavioral variability. Neuroimage 39, 527-537. https://doi.org/10.1016/j.neuroimage.2007.08.008 .
- Klumpp, H., Amir, N., 2009. Examination of vigilance and disengagement of threat in social anxiety with a probe detection task. Anxiety Stress Coping 22, 283-296. https://doi.org/10.1080/10615800802449602 .
- Koush, Y., Ashburner, J., Prilepin, E., Sladky, R., Zeidman, P., Bibikov, S., Scharnowski, F., Nikonorov, A., De Ville, D.Van, 2017a. OpenNFT: an open-source Python/Matlab framework for real-time fMRI neurofeedback training based on ac- tivity, connectivity and multivariate pattern analysis. Neuroimage 156, 489-503. https://doi.org/10.1016/j.neuroimage.2017.06.039 .
- Koush, Y., Ashburner, J., Prilepin, E., Sladky, R., Zeidman, P., Bibikov, S., Scharnowski, F., Nikonorov, A., Van De Ville, D., 2017b. Real-time fMRI data for testing OpenNFT functionality. Data Brief 14, 344-347. https://doi.org/10.1016/j.dib.2017.07.049 .
- Koush, Y., Zvyagintsev, M., Dyck, M., Mathiak, K.A., Mathiak, K., 2012. Signal quality and Bayesian signal processing in neurofeedback based on real-time fMRI. Neuroimage 59, 478-489. https://doi.org/10.1016/j.neuroimage.2011.07.076 .
- Langner, R., Eickhoff, S.B., 2013. Sustaining attention to simple tasks: a meta-analytic review of the neural mechanisms of vigilant attention. Psychol. Bull. 139, 870-900. https://doi.org/10.1037/a0030694 .
- Lawrence, N.S., Ross, T.J., Hoffmann, R., Garavan, H., Stein, E.A., 2003. Multiple neu- ronal networks mediate sustained attention. J. Cognit. Neurosci. 15, 1028-1038. https://doi.org/10.1162/089892903770007416 .
- Linden, D.E.J., Habes, I., Johnston, S.J., Linden, S., Tatineni, R., Subrama- nian, L., Sorger, B., Healy, D., Goebel, R., 2012. Real-time self-regulation of emotion networks in patients with depression. PLoS One 7, 1-10. https://doi.org/10.1371/journal.pone.0038115 .
- Lindquist, M.A., 2008. The statistical analysis of fMRI data. Stat. Sci. 23, 439-464. https://doi.org/10.1214/09-STS282 .
- Loh, S., Lamond, N., Dorrian, J., Roach, G., Dawson, D., 2004. The validity of psychomotor vigilance tasks of less than 10-minute duration. Behav. Res. Methods Instrum. Comput. 36, 339-346. https://doi.org/10.3758/BF03195580 .
- Manna, A., Raffone, A., Perrucci, M.G., Nardo, D., Ferretti, A., Tartaro, A., Londei, A., Gratta, C.Del, Belardinelli, M.O., Romani, G.L., 2010. Neural correlates of focused attention and cognitive monitoring in meditation. Brain Res. Bull. 82, 46-56. https://doi.org/10.1016/j.brainresbull.2010.03.001 .
- Marxen, M., Jacob, M.J., Müller, D.K., Posse, S., Ackley, E., Hellrung, L., Riedel, P., Bender, S., Epple, R., Smolka, M.N., 2016. Amygdala regulation following fMRI- neurofeedback without instructed strategies. Front. Hum. Neurosci. 10, 1-14. https://doi.org/10.3389/fnhum.2016.00183 .
- Mason, M.F., Norton, M.I., Van Horn, J.D., Wegner, D.M., Grafton, S.T., Macrae, C.N., 2007. Wandering minds: the default network and stimulus-independent thought. Sci- ence 315, 393-395. (80-.) https://doi.org/10.1126/science.1131295 .
- Matthews, G., Joyner, L., Gilliand, K., Campbell, S.E., Falconer, S., Huggins, J., 1999. Validation of a comprehensive stress state questionnaire -towards a state "big three "? Personal. Psychol. Eur. 7, 335-350. https://doi.org/10.1177/154193120404801107 .
- Mayeli, A., Misaki, M., Zotev, V., Tsuchiyagaito, A., Al Zoubi, O., Phillips, R., Smith, J., Stewart, J.L., Refai, H., Paulus, M.P., Bodurka, J., 2020. Self-regulation of ventromedial prefrontal cortex activation using real-time fMRI neurofeed- back -influence of default mode network. Hum. Brain Mapp. 41, 342-352. https://doi.org/10.1002/hbm.24805 .
- Miller, K.L., Alfaro-Almagro, F., Bangerter, N.K., Thomas, D.L., Yacoub, E., Xu, J., Bartsch, A.J., Jbabdi, S., Sotiropoulos, S.N., Andersson, J.L.R., Griffanti, L., Douaud, G., Okell, T.W., Weale, P., Dragonu, I., Garratt, S., Hudson, S., Collins, R., Jenkinson, M., Matthews, P.M., Smith, S.M., 2016. Multimodal population brain imag- ing in the UK Biobank prospective epidemiological study. Nat. Neurosci. 19, 1523- 1536. https://doi.org/10.1038/nn.4393 .
- Mueller, S.T., Piper, B.J., 2014. The psychology experiment building lan- guage (PEBL) and PEBL test battery. J. Neurosci. Methods 222, 250-259. https://doi.org/10.1016/j.jneumeth.2013.10.024 .
- O'Keeffe, F.M., Murray, B., Coen, R.F., Dockree, P.M., Bellgrove, M.A., Garavan, H., Lynch, T., Robertson, I.H., 2007. Loss of insight in frontotemporal dementia, cor- ticobasal degeneration and progressive supranuclear palsy. Brain 130, 753-764. https://doi.org/10.1093/brain/awl367 .
- Ogg, R.J., Zou, P., Allen, D.N., Hutchins, S.B., Dutkiewicz, R.M., Mulhern, R.K., 2008. Neural correlates of a clinical continuous performance test. Magn. Reson. Imaging 26, 504-512. https://doi.org/10.1016/j.mri.2007.09.004 .
- Paas, F.G.W.C., Van Merriënboer, J.J.G., 1993. The efficiency of instructional conditions: an approach to combine mental effort and performance measures. Hum. Factors 35, 737-743. https://doi.org/10.1177/001872089303500412 .
- Pamplona, G.S.P., Vieira, B.H., Scharnowski, F., Salmon, C.E.G., 2020. Personode: a tool- box for ICA map classification and individualized ROI definition. Neuroinformatics 18, 339-349. https://doi.org/10.1007/s12021-019-09449-4 .
- Piper, B., Mueller, S.T., Talebzadeh, S., Ki, M.J., 2016. Evaluation of the validity of the Psychology Experiment Building Language tests of vigilance, auditory memory, and decision making. PeerJ 2016, e1772. https://doi.org/10.7717/peerj.1772 .
- Piper, B.J., Mueller, S.T., Geerken, A.R., Dixon, K.L., Kroliczak, G., Olsen, R.H.J., Miller, J.K., 2015. Reliability and validity of neurobehavioral function on the Psy- chology Experimental Building Language test battery in young adults. PeerJ 3, e1460. https://doi.org/10.7717/peerj.1460 .
- Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., Shulman, G.L., 2001. A default mode of brain function. Proc. Natl. Acad. Sci. 98, 676-682. https://doi.org/10.1073/pnas.98.2.676 .
- Robertson, I.H. , 2003. The absent mind: attention and error. Psychologist 16, 476-479 .
- Robineau, F., Rieger, S.W., Mermoud, C., Pichon, S., Koush, Y., Van De Ville, D., Vuilleu- mier, P., Scharnowski, F., 2014. Self-regulation of inter-hemispheric visual cortex balance through real-time fMRI neurofeedback training. Neuroimage 100, 1-14. https://doi.org/10.1016/j.neuroimage.2014.05.072 .
- Rosenberg, M.D., Finn, E.S., Scheinost, D., Papademetris, X., Shen, X., Constable, R.T., Chun, M.M., 2016. A neuromarker of sustained attention from whole-brain functional connectivity. Nat. Neurosci. 19, 165-171. https://doi.org/10.1038/nn.4179 .
- Ruiz, S., Buyukturkoglu, K., Rana, M., Birbaumer, N., Sitaram, R., 2014. Real-time fMRI brain computer interfaces: self-regulation of single brain regions to networks. Biol. Psychol. 95, 4-20. https://doi.org/10.1016/j.biopsycho.2013.04.010 .
- Scharnowski, F., Hutton, C., Josephs, O., Weiskopf, N., Rees, G., 2012. Improv- ing visual perception through neurofeedback. J. Neurosci. 32, 17830-17841. https://doi.org/10.1523/JNEUROSCI.6334-11.2012 .
- Scharnowski, F., Veit, R., Zopf, R., Studer, P., Bock, S., Diedrichsen, J., Goebel, R., Mathiak, K., Birbaumer, N., Weiskopf, N., 2015. Manipulating motor performance and memory through real-time fMRI neurofeedback. Biol. Psychol. 108, 85-97. https://doi.org/10.1016/J.BIOPSYCHO.2015.03.009 .
- Scheinost, D., Stoica, T., Saksa, J., Papademetris, X., Constable, R.T., Pittenger, C., Hampson, M., 2013. Orbitofrontal cortex neurofeedback produces lasting changes in contamination anxiety and resting-state connectivity. Transl. Psychiatry 3, e250. https://doi.org/10.1038/tp.2013.24 .
- Schilbach, L., Bzdok, D., Timmermans, B., Fox, P.T., Laird, A.R., Vogeley, K., Eickhoff, S.B., 2012. Introspective minds: using ALE meta-analyses to study commonalities in the neural correlates of emotional processing, social & unconstrained cognition. PLoS One 7, 1-10. https://doi.org/10.1371/journal.pone.0030920 .
- Seli, P., Kane, M., Smallwood, J., Schacter, D., Maillet, D., Schooler, J., Smilek, D., 2018. Mind-wandering as a natural kind: a family-resemblances view. Trends Cognit. Sci. 22. https://doi.org/10.1016/j.tics.2018.03.010 .
- Sepulveda, P., Sitaram, R., Rana, M., Montalba, C., Tejos, C., Ruiz, S., 2016. How feedback, motor imagery, and reward influence brain self-regulation using real-time fMRI. Hum. Brain Mapp. 37, 3153-3171. https://doi.org/10.1002/hbm.23228 .
- Shen, X., Tokoglu, F., Papademetris, X., Constable, R.T., 2013. Groupwise whole-brain parcellation from resting-state fMRI data for network node identification. Neuroimage 82, 403-415. https://doi.org/10.1016/j.neuroimage.2013.05.081 .
- Shibata, K., Watanabe, T., Sasaki, Y., Kawato, M., 2011. Perceptual learning incepted by decoded fMRI neurofeedback without stimulus presentation. Science 334, 1413-1415. (80-.) https://doi.org/10.1126/science.1212003 .
- Sitaram, R., Ros, T., Stoeckel, L., Haller, S., Scharnowski, F., Lewis-Peacock, J., Weiskopf, N., Blefari, M.L., Rana, M., Oblak, E., Birbaumer, N., Sulzer, J., 2017. Closed-loop brain training: the science of neurofeedback. Nat. Rev. Neurosci. 18, 86- 100. https://doi.org/10.1038/nrn.2016.164 .
- Sitaram, R., Weiskopf, N., Caria, A., Veit, R., Erb, M., Birbaumer, N., 2008. fMRI brain-computer interfaces. IEEE Signal Process. Mag. 25, 95-106. https://doi.org/10.1109/MSP.2008.4408446 .
- Skouras, S., Scharnowski, F., 2019. The effects of psychiatric history and age on self-regulation of the default mode network. Neuroimage 198, 150-159. https://doi.org/10.1016/j.neuroimage.2019.05.008 .
- Sohn, W., Yoo, K., Lee, Y.-B., Seo, S., Na, D., Jeong, Y., 2015. Influence of ROI selection on resting state functional connectivity: an individualized approach for resting state fMRI analysis. Front. Neurosci. 9, 280. https://doi.org/10.3389/fnins.2015.00280 .
- Sood, A., Jones, D.T., 2013. On mind wandering, attention, brain networks, and meditation.
- Explor. J. Sci. Heal. 9, 136-141. https://doi.org/10.1016/j.explore.2013.02.005 .
- Sorger, B., Scharnowski, F., Linden, D.E.J., Hampson, M., Young, K.D., 2019. Control freaks: towards optimal selection of control conditions for fMRI neurofeedback stud- ies. Neuroimage 186, 256-265. https://doi.org/10.1016/j.neuroimage.2018.11.004 .
- Spreng, R., 2012. The fallacy of a "task-negative " network. Front. Psychol. 3, 145. https://doi.org/10.3389/fpsyg.2012.00145 .
- Sulzer, J., Haller, S., Scharnowski, F., Weiskopf, N., Birbaumer, N., Blefari, M.L., Bruehl, A.B., Cohen, L.G., DeCharms, R.C., Gassert, R., Goebel, R., Her- wig, U., LaConte, S., Linden, D., Luft, A., Seifritz, E., Sitaram, R., 2013. Real- time fMRI neurofeedback: progress and challenges. Neuroimage 76, 386-399. https://doi.org/10.1016/j.neuroimage.2013.03.033 .
- Tanji, J., 1994. The supplementary motor area in the cerebral cortex. Neurosci. Res. 19, 251-268. https://doi.org/10.1016/0168-0102(94)90038-8 .
- Thibault, R.T., Lifshitz, M., Raz, A., 2017. Neurofeedback or neuroplacebo? Brain 140, 862-864. https://doi.org/10.1093/brain/awx033 .
- Thompson, G.J., Magnuson, M.E., Merritt, M.D., Schwarb, H., Pan, W.J., Mckin- ley, A., Tripp, L.D., Schumacher, E.H., Keilholz, S.D., 2013. Short-time win- dows of correlation between large-scale functional brain networks predict vigi- lance intraindividually and interindividually. Hum. Brain Mapp. 34, 3280-3298. https://doi.org/10.1002/hbm.22140 .
- Vollebregt, M.A., Dongen-boomsma, M.Van, Buitelaar, J.K., Slaats-willemse, D., 2014. Does EEG-neurofeedback improve neurocognitive functioning in chil- dren with attention-deficit/hyperactivity disorder? A systematic review and a double-blind placebo-controlled study. J. Child Psychol. Psychiatry 5, 460-472. https://doi.org/10.1111/jcpp.12143 .
- Weiskopf, N., Scharnowski, F., Veit, R., Goebel, R., Birbaumer, N., Math- iak, K., 2004. Self-regulation of local brain activity using real-time func- tional magnetic resonance imaging (fMRI). J. Physiol. Paris 98, 357-373. https://doi.org/10.1016/j.jphysparis.2005.09.019 .
- Weissman, D.H., Roberts, K.C., Visscher, K.M., Woldorff, M.G., 2006. The neu- ral bases of momentary lapses in attention. Nat. Neurosci. 9, 971-978. https://doi.org/10.1038/nn1727 .
- West, S.G., Aiken, L.S., Krull, J.L., 1996. Experimental personality designs: an- alyzing categorical by continuous variable interactions. J. Pers. 64, 1-48. https://doi.org/10.1111/j.1467-6494.1996.tb00813.x .
- Wilmer, H.H., Sherman, L.E., Chein, J.M., 2017. Smartphones and cognition: a review of research exploring the links between mobile technology habits and cognitive func- tioning. Front. Psychol. 8, 605. https://doi.org/10.3389/fpsyg.2017.00605 .
- Wolff, N., Mückschel, M., Beste, C., 2017. Neural mechanisms and functional neu- roanatomical networks during memory and cue-based task switching as revealed by residue iteration decomposition (RIDE) based source localization. Brain Struct. Funct. 222, 3819-3831. https://doi.org/10.1007/s00429-017-1437-8 .
- Yeo, B.T., Krienen, F.M., Sepulcre, J., Sabuncu, M.R., Lashkari, D., Hollinshead, M., Roffman, J.L., Smoller, J.W., Zöllei, L., Polimeni, J.R., Fischl, B., Liu, H., Buckner, R.L., 2011. The organization of the human cerebral cortex esti- mated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125-1165. https://doi.org/10.1152/jn.00338.2011 .
- Zhang, G., Zhang, H., Li, X., Zhao, X., Yao, L., Long, Z., 2013. Functional alteration of the DMN by learned regulation of the PCC using real-time fMRI. IEEE Trans. Neural Syst. Rehabil. Eng. 21, 595-606. https://doi.org/10.1109/TNSRE.2012.2221480 .
- Zilverstand, A., Sorger, B., Slaats-Willemse, D., Kan, C.C., Goebel, R., Buite- laar, J.K., 2017. fMRI neurofeedback training for increasing anterior cin- gulate cortex activation in adult attention deficit hyperactivity disorder. An exploratory randomized, single-blinded study. PLoS One 12, e0170795. https://doi.org/10.1371/journal.pone.0170795 .