Academia.eduAcademia.edu

Outline

Potential of Quantum Finite Automata with Exact Acceptance

2015, International Journal of Foundations of Computer Science

https://doi.org/10.1142/S0129054115500215

Abstract

The potential of the exact quantum information processing is an interesting, important and intriguing issue. For examples, it has been believed that quantum tools can provide significant, that is larger than polynomial, advantages in the case of exact quantum computation only, or mainly, for problems with very special structures. We will show that this is not the case. In this paper the potential of quantum finite automata producing outcomes not only with a (high) probability, but with certainty (so called exactly) is explored in the context of their uses for solving promise problems and with respect to the size of automata. It is shown that for solving particular classes [Formula: see text] of promise problems, even those without some very special structure, that succinctness of the exact quantum finite automata under consideration, with respect to the number of (basis) states, can be very small (and constant) though it grows proportional to [Formula: see text] in the case determin...

References (33)

  1. A. Ambainis and J. Watrous, Two-way finite automata with quantum and classical states, TCS 287 (2002) 299-311.
  2. A. Ambainis, A. Nayak, A. Ta-Shma and U. Vazirani, Dense quantum coding and quantum automata, Journal of the ACM 49 (2002) 496-511.
  3. A. Ambainis and R. Freivalds, One-way quantum finite automata: strengths, weaknesses and generalizations, in Proceedings of the 39th FOCS (1998) 332-341.
  4. A. Ambainis and N. Nahimovs, Improved constructions of quantum automata, TCS 410 (2009) 1916-1922.
  5. A. Ambainis and A. Yakaryilmaz, Superiority of exact quantum automata for promise problems, Information Pro- cessing Letters 112 (2012) 289-291.
  6. A. Ambainis, Superlinear advantage for exact quantum algorithms, in Proceedings of 45th STOC (2013) 891-900.
  7. A. Ambainis, A. Iraids and J. Smotrovs, Exact quantum query complexity of EXACT and THRESHOLD, in Pro- ceedings of 8th TQC (2013) 263-269. Also arXiv:1302.1235.
  8. A. Ambainis, J. Gruska and S.G Zheng, Exact query complexity of some special classes of Boolean functions, arXiv:1404.1684 (2014).
  9. A. Bertoni, C. Mereghetti and B. Palano, Small size quantum automata recognizing some regular languages, TCS 340 (2005) 394-407.
  10. A. Bertoni, C. Mereghetti and B. Palano, Some formal tools for analyzing quantum automata, TCS 356 (2006) 14-25.
  11. A. Brodsky and N. Pippenger, Characterizations of 1-way quantum finite automata, SIAM Journal on Computing 31 (2002) 1456-1478.
  12. G. Brassard and P. Høyer, An exact quantum polynomial-time algorithm for Simon's problem, in Proceedings of the Israeli Symposium on Theory of Computing and Systems (1997) 12-23.
  13. H. Buhrman, R. Cleve and A. Wigderson, Quantum vs. classical communication and computation, in Proceedings of 30th STOC (1998) 63-68.
  14. H. Buhrman, R. Cleve, R. de Wolf and C. Zalka, Bounds for small-error and zero-error quantum algorithms, in Proceedings of the 40th FOCS (1999) 358-359.
  15. R. Cleve, A. Ekert, C. Macchiavello and M. Mosca. Quantum algorithms revisited, in Proceedings of the Royal Society of London A454 (1998) 339-354.
  16. D. Deutsch and R. Jozsa, Rapid solution of problems by quantum computation, in Proceedings of the Royal Society of London A439 (1992) 553-558.
  17. R. Freivalds, M. Ozols and L. Mancinska, Improved constructions of mixed state quantum automata, TCS 410 (2009) 1923-1931.
  18. J. Gruska, Quantum Computing, McGraw-Hill, London (1999).
  19. J. Gruska, Descriptional complexity issues in quantum computing, J. Automata, Languages Combin. 5 (2000) 191-218.
  20. J. Gruska, D. W. Qiu and S. G. Zheng, Generalizations of the distributed Deutsch-Jozsa promise problem, arXiv:1402.7254 (2014).
  21. H. Klauck, On quantum and probabilistic communication: Las Vegas and one-way protocols, in Proceedings of the 32th STOC (2000) 644-651.
  22. A. Kondacs and J. Watrous, On the power of quantum finite state automata, in Proceedings of the 38th FOCS (1997) 66-75.
  23. L.Z. Li, D.W. Qiu, X.F. Zou, L.J. Li, L.H. Wu and P. Mateus, Characterizations of one-way general quantum finite automata, TCS 419 (2012) 73-91.
  24. A. Montanaro, R. Jozsa and G. Mitchison, On exact quantum query complexity, Algorithmica (2013) 1-22. Also arXiv:1111.0475.
  25. Y. Murakami, M. Nakanishi, S. Yamashita and K. Watanabe, Quantum versus classical pushdown automata in exact computation, IPSJ Digital Courier 1 (2005) 426-435.
  26. C. Moore and J.P. Crutchfield, Quantum automata and quantum grammars, TCS 237 (2000) 275-306.
  27. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge (2000).
  28. D. W. Qiu, L. Z. Li, P. Mateus and J. Gruska, Quantum finite automata, CRC Handbook of Finite State Based Models and Applications, CRC Press (2012) 113-144.
  29. A. Yakaryilmaz and A. C. Cem Say, Unbounded-error quantum computation with small space bounds, Information and Computation 209 (2011) 873-892.
  30. A. Yakaryilmaz, A. C. Cem Say, Succinctness of two-way probabilistic and quantum finite automata, Discrete Math- ematics and Theoretical Computer Science 12 (2010) 19-40.
  31. S.G. Zheng, D.W. Qiu, L.Z. Li and J. Gruska, One-way finite automata with quantum and classical states, Dassow Festschrift 2012, LNCS 7300 (2012) 273-290.
  32. S. G. Zheng, D. W. Qiu, J. Gruska, L. Z. Li and P. Mateus, State succinctness of two-way finite automata with quantum and classical states, TCS 499 (2013) 98-112.
  33. S. G. Zheng, J. Gruska and D. W. Qiu, On the state complexity of semi-quantum finite automata, in Proceedings of 8th LATA, LNCS 8370 (2014) 601-612. Also arXiv:1307.2499.