Academia.eduAcademia.edu

Outline

Arithmetic on semigroups

2009, The Journal of Symbolic Logic

Abstract

Relations between some theories of semigroups (also known as theories of strings or theories of concatenation) and arithmetic are surveyed. In particular Robinson's arithmetic Q is shown to be mutually interpretable with TC, a weak theory of concatenation introduced by Grzegorczyk. Furthermore, TC is shown to be interpretable in the theory F studied by Tarski and Szmielewa, thus confirming their claim that F is essentially undecidable. §0. Introduction. Prior to Gödel's work on the arithmetization of syntax Tarski developed a rigorous mathematical treatment of the syntax of formal languages in . He used a second-order version of the theory of concatenation on strings of symbols from a finite alphabet, or, from an algebraic viewpoint, the theory of free semigroups with a finite set of generators. Much later, after important work by Quine and Bennett, Corcoran, Frank, and Maloney investigated the relations between Tarski's theory, a generalized successor theory put forward by Hans Hermes in [10] and second-order Peano arithmetic 1 .

References (19)

  1. BENNETT, J., On Spectra, Doctoral dissertation, Department of Mathematics, Princeton University, 1962.
  2. ČAČIĆ, V., PUDLÁK, P., RESTALL, G., URQUHART, A., VISSER, A., Decorated Linear Order Types and the Theory of Concatenation, LGPS preprint 258 (October 4, 2007), available online at http://www.phil.uu.nl/preprints/preprints/PREPRINTS/preprint258.pdf.
  3. CORCORAN, J., FRANK, W., MALONEY, M., String Theory, Journal of Symbolic Logic, vol. 39(4)/1974, pp. 625-636.
  4. DE BOUVÈRE, K., Logical synonymity, Indagationes mathematicae, vol. 27/1965, pp. 622- 629.
  5. GANEA, M., Arithmetic without Numbers, Doctoral dissertation, Department of Philosophy, University of Illinois at Chicago, 2005.
  6. GRZEGORCZYK, A., Undecidability without arithmetization, Studia Logica, vol. 79(1)/2005, pp. 163-230.
  7. GRZEGORCZYK, A., ZDANOWSKI, K., Undecidability and Concatenation, in Andrej Mostowski and Foundational Studies (A. Ehrenfeucht, V. W. Marek and M. Srebrny, editors), IOS Press, 2008, pp. 72-91.
  8. HÁJEK, P., PUDLÁK, P., Metamathematics of First-Order Arithmetic, Springer, 1993.
  9. HILBERT, D., BERNAYS, P., Grundlagen der Mathematik, vol. I, Springer, 1934.
  10. HERMES, H., Semiotik, Eine Theorie der Zeichengestalten als Grundlage für Untersuchungen von formalizierten Sprachen, Forschungen zur Logik und zur Grundlage der exacten Wissenschaften, n.s. no. 5, Leipzig, 1938.
  11. JONES, J. P., SHEPDERSON, J. C., Variants of Robinson's essentially undecidable theory R, Archive for Mathematical Logic, vol. 23/1983, pp. 61-64.
  12. QUINE, W., Concatenation as a basis for arithmetic, Journal of Symbolic Logic, vol. 11(4)/1946, pp. 105-114.
  13. ŠVEJDAR, V., An Interpretation of Robinson Arithmetic in its Grzegorczyk's Weaker Variant, Fundamenta Informaticae, vol. 81/2007, pp. 347-354.
  14. ŠVEJDAR, V., Weak Theories and Essential Incompleteness, to appear in The Logica Yearbook 2007: Proc. of the Logica '07 International Conference (M. Peliš, editor), Hejnice, Czech Republic. Filosofia, Praha, 2008.
  15. ŠVEJDAR, V., On Interpretability in the Theory of Concatenation, preprint, submitted for publication, December 2007.
  16. TARSKI, A., The Concept of Truth in Formalized Languages, English translation by J. H. Woodger, in Logic, Semantics, Metamathematics, 2 nd ed. (J. Corcoran, editor), Hackett, 1983, pp. 152-278.
  17. TARSKI, A., MOSTOWSKI, A., ROBINSON, R., Undecidable Theories, 2 nd printing, North Holland, 1968.
  18. VISSER, A.: Growing Commas -A Study of Sequentiality and Concatenation, LGPS preprint 257 (August 2007), available online at http://www.phil.uu.nl/preprints/preprints/PREPRINTS/preprint257.pdf DEPARTMENT OF PHILOSOPHY BOSTON UNIVERSITY BOSTON, MA 02215, USA
  19. E-mail: mganea@bu.edu