Academia.eduAcademia.edu

Outline

A Design Model for Educational Multimedia Software

2014, Creative Education

https://doi.org/10.4236/CE.2014.523224

Abstract

The design and implementation of educational software call into play two well established domains: software engineering and education. Both fields attain concrete results and are capable of making predictions in the respective spheres of action. However, at the intersection, the reports about the development of computer games and other educational software reiterate similar difficulties and an embarrassing degree of empiricism. This study aims to bring a contribution, presenting a model for the conception of educational multimedia software by multidisciplinary teams. It joins three elements: Ausubel's theory of meaningful learning; the theory of multimedia from Mayer; and the study of software ergonomics. The structure proposed here emerged from a theoretical study with the concurrent development of software. Observations gathered in a small scale test confirmed the expected design issues and the support provided by the model. Limitations and possible directions of study are discussed.

References (48)

  1. Alsumait, A., & Al-Osaimi, A. (2009). Usability Heuristics Evaluation for Child E-Learning Applications. Proceedings of iiWAS2009, 425-430.
  2. Ardito, C., Buono, P., Costabile, M. F., Lanzilotti, R., & Piccinn, A. (2009). Enabling Interactive Exploration of Cultural Heritage: An Experience of Designing Systems for Mobile Devices. Knowledge Technology and Policy, 22, 79-86. http://dx.doi.org/10.1007/s12130-009-9079-7
  3. Banich, M. T., Milham, M. P., Atchley, R., Cohen, N. J., Webb, A., Wszalek, T., Kramer, A. F., Liang, Z. P., Wright, A., Shenker, J., & Magi, R. (2000). fMRI Studies of Stroop Tasks Reveal Unique Roles of Anterior and Posterior Brain Sys- tems in Attentional Selection. Journal of Cognition Neuroscience, 12, 988-1000. http://dx.doi.org/10.1162/08989290051137521
  4. Bethke, E. (2003). Game Development and Production. Plano, TX: Wordware Publishing, Inc.
  5. Brusilovsky, P., & Millán, E. (2007). User Models for Adaptive Hypermedia and Adaptive Educational Systems. In P. Bru- silovsky, A. Kobsa, & W. Nejdl (Eds.), The Adaptive Web (pp. 3-53). Berlin: Springer-Verlag. http://dx.doi.org/10.1007/978-3-540-72079-9_1
  6. Clement, J. (1982). Student's Preconceptions in Introductory Mechanics. American Journal of Physics, 50, 66-70. http://dx.doi.org/10.1119/1.12989
  7. Cooper, M. M., Grove, N., Underwood, S. M., & Klymkowsky, M. W. (2010). Lost in Lewis Structures: An Investigation of Student Difficulties in Developing Representational Competence. Journal of Chemical Education, 87, 869-874. http://dx.doi.org/10.1021/ed900004y
  8. Craig, S. D., Graesser, A., Sullins, J., & Gholson, B. (2004). Affect and Learning: An Exploratory Look into the Role of Af- fect in Learning with Auto Tutor. Journal of Educational Media, 29, 241-250. http://dx.doi.org/10.1080/1358165042000283101
  9. De Bra, P. M. E., & Calvi, L. (1999). AHA! An Open Adaptive Hypermedia Architecture. New Review of Hypermedia and Multimedia, 4, 115-139. http://dx.doi.org/10.1080/13614569808914698
  10. Felder, R. M., & Silverman, L. K. (1988). Learning and Teaching Styles in Engineering Education. Engineering Education, 78, 674-681.
  11. Flynt, J. P., & Salem, O. (2005). Software Engineering for Game Developers. Boston, MA: Thomson Course Technology Ptr.
  12. Ford, N., & Chen, S. Y. (2000). Individual Differences, Hypermedia Navigation, and Learning: An Empirical Study. Journal of Educational Multimedia and Hypermedia, 9, 281-311.
  13. Gardner, H. (1983). Frames of Mind: The Theory of Multiple Intelligences. Philadelphia, PA: Basic Books.
  14. Herrington, J., & Oliver, R. (2000). An Instructional Design Framework for Authentic Learning Environments. Educational Technology Research and Development, 48, 23-48. http://dx.doi.org/10.1007/BF02319856
  15. Immordino-Yang, M. H., & Damasio, A. (2011). We Feel, Therefore We Learn: The Relevance of Affective and Social Neuroscience to Education. Mind, Brain, and Education: Implications for Educators, 5, 115-132.
  16. Johnson, L. A., & Schleyer, T. K. L. (2003). Developing High-Quality Educational Software. Journal of Dental Education, 67, 1209-1220.
  17. Kirkman, B. L., & Rosen, B. (1999). Beyond Self-Management: Antecedents and Consequences of Team Empowerment. The Academy of Management Journal, 42, 58-74. http://dx.doi.org/10.2307/256874
  18. Kolb, A. Y., & Kolb, D. A. (2005). Learning Styles and Learning Spaces: Enhancing Experiential Learning in Higher Edu- cation. Academy of Management Learning & Education, 4, 193-212. http://dx.doi.org/10.5465/AMLE.2005.17268566
  19. Koscianski, A., & Soares, M. (2006). Qualidade de Software. São Paulo: Novatec.
  20. Koscianski, A., Ribeiro, R. J., & Silva, S. C. R. (2012) Short Animation Movies as Advance Organizers in Physics Teaching: A Preliminary Study. Research in Science & Technological Education, 30, 1-15. http://dx.doi.org/10.1080/02635143.2012.732057
  21. Mayer, R. E. (2001). Multimedia Learning. New York: Cambridge University Press. http://dx.doi.org/10.1017/CBO9781139164603
  22. Mayer, R. E. (2008). Applying the Science of Learning: Evidence-Based Principles for the Design of Multimedia Instruction. American Psychologist, 63, 760. http://dx.doi.org/10.1037/0003-066X.63.8.760
  23. Meigs, T. (2003). Ultimate Game Design: Building Game Worlds. Emeryville, CA: McGraw Hill/Osborne.
  24. Miller, G. A. (1956). The Magical Number Seven, plus or minus Two: Some Limits on Our Capacity for Processing Infor- mation. Psychological Review, 101, 343-352. http://dx.doi.org/10.1037/0033-295X.101.2.343
  25. Nielsen, J. (1992a). Finding Usability Problems through Heuristic Evaluation. In P. Bauersfield, J. Bennet, & G. Lynch (Eds.), Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 373-380). New York: Aca- demic Press. http://dx.doi.org/10.1145/142750.142834
  26. Nielsen, J. (1992b). The Usability Engineering Life Cycle. Computer, 25, 12-22. http://dx.doi.org/10.1109/2.121503
  27. Novak, J. D., & Cañas, A. J. (2006). The Theory Underlying Concept Maps and How to Construct Them. Technical Report IHMC Cmap Tools, Pensacola, FL: Florida Institute for Human and Machine Cognition.
  28. O'Reagan, J. K., & Noë, A. (2001). A Sensorimotor Account of Vision and Visual Consciousness. Behavioral and Brain Sciences, 24, 939-1031. http://dx.doi.org/10.1017/S0140525X01000115
  29. Paivio, A. (1986). Mental Representations: A Dual Coding Approach. Oxford: Oxford University Press.
  30. Park, I., & Hannafin, M. J. (1993). Empirically-Based Guidelines for the Design of Interactive Multimedia. Educational Technology Research and Development, 41, 63-85. http://dx.doi.org/10.1007/BF02297358
  31. Pessoa, L. (2008). On the Relationship between Emotion and Cognition. Nature Reviews Neuroscience, 9, 148-158. http://dx.doi.org/10.1038/nrn2317
  32. Phelps, E. A. (2006). Emotion and Cognition: Insights from Studies of the Human Amygdala. Annual Review of Psychology, 57, 27-53. http://dx.doi.org/10.1146/annurev.psych.56.091103.070234
  33. Preece, J., Rogers, Y., & Sharp, H. (2002). Interaction Design: Beyond Human-Computer Interaction. New York: John Wiley & Sons.
  34. Pressman, R., & Maxim, B. (2009). Software Engineering: A Practitioner's Approach (8th ed.). New York: McGraw-Hill Higher Education.
  35. Quílez-Pardo, J., & Solaz-Portolés, J. J. (1995). Students' and Teachers' Misapplication of Le Chatelier's Principle: Implica- tions for the Teaching of Chemical Equilibrium. Journal of Research in Science Teaching, 32, 939-957. http://dx.doi.org/10.1002/tea.3660320906
  36. Rollings, A., & Morris, D. (2004). Game Architecture and Design: A New Edition. Indianapolis, IN: New Riders Publishing.
  37. Safdari, R., Dargahi, H., Shahmoradi, L., & Nejad, A. F. (2012). Comparing Four Softwares Based on ISO 9241 Part 10. Journal of Medical Systems, 36, 2787-2793. http://dx.doi.org/10.1007/s10916-011-9755-5
  38. Sankey, M. D., Birch, D., & Gardiner, M. W. (2011) The Impact of Multiple Representations of Content Using Multimedia on Learning Outcomes across Learning Styles and Modal Preferences. International Journal of Education and Develop- ment Using Information and Communication Technology, 7, 18-35.
  39. Schunk, D. H. (2012). Learning Theories, an Educational Perspective (6th ed.). Boston, MA: Pearson Education Inc.
  40. Schunk, D. Meece, J., & Pintrich, P. R. (1996). Motivation in Education: Theory, Research and Applications. Englewood Cliffs, NJ: Merrill Prentice-Hall.
  41. Squirres, D., & Preece, J. (1999). Predicting Quality in Educational Software: Evaluating for Learning, Usability and the Synergy between Them. Interacting with Computers, 11, 467-483. http://dx.doi.org/10.1016/S0953-5438(98)00063-0
  42. Stefani, C., & Tsaparlis, G. (2009). Students' Levels of Explanations, Models, and Misconceptions in Basic Quantum Chemistry: A Phenomenographic Study. Journal of Research in Science Teaching, 46, 520-536. http://dx.doi.org/10.1002/tea.20279
  43. Storbeck, J., & Clore, G. L. (2007). On the Interdependence of Cognition and Emotion. Cognition and Emotion, 21, 1212- 1237. http://dx.doi.org/10.1080/02699930701438020
  44. Talanquer, V. (2006). Commonsense Chemistry: A Model for Understanding Students' Alternative Conceptions. Journal of Chemical Education, 83, 811. http://dx.doi.org/10.1021/ed083p811
  45. Tergan, S. O. (1998). Checklists for the Evaluation of Educational Software: Critical Review and Prospects. Innovations in Education & Training International, 35, 9-20. http://dx.doi.org/10.1080/1355800980350103
  46. Weinberg, G. M. (1999). Quality Software Management. Vol. 1: Systems Thinking. New York: Dorset House.
  47. Wiegers, K. (2003). Software Requirements 2 (2nd ed.). Redmond, WA: Microsoft Press.
  48. Yourdon, E. (1989). Structured Walkthroughs (4th ed.). Upper Saddle River, NJ: Yourdon Press.