Academia.eduAcademia.edu

Outline

LPaaS as Micro-Intelligence: Enhancing IoT with Symbolic Reasoning

Big Data and Cognitive Computing

https://doi.org/10.3390/BDCC2030023

Abstract

In the era of Big Data and IoT, successful systems have to be designed to discover, store, process, learn, analyse, and predict from a massive amount of data—in short, they have to behave intelligently. Despite the success of non-symbolic techniques such as deep learning, symbolic approaches to machine intelligence still have a role to play in order to achieve key properties such as observability, explainability, and accountability. In this paper we focus on logic programming (LP), and advocate its role as a provider of symbolic reasoning capabilities in IoT scenarios, suitably complementing non-symbolic ones. In particular, we show how its re-interpretation in terms of LPaaS (Logic Programming as a Service) can work as an enabling technology for distributed situated intelligence. A possible example of hybrid reasoning—where symbolic and non-symbolic techniques fruitfully combine to produce intelligent behaviour—is presented, demonstrating how LPaaS could work in a smart energy grid...

References (74)

  1. Larrucea, X.; Combelles, A.; Favaro, J.; Taneja, K. Software Engineering for the Internet of Things. IEEE Softw. 2017, 34, 24-28. [CrossRef]
  2. Lippi, M.; Mamei, M.; Mariani, S.; Zambonelli, F. Coordinating Distributed Speaking Objects. In Proceedings of the IEEE 37th International Conference on Distributed Computing Systems (ICDCS 2017), Atlanta, GA, USA, 5-8 June 2017; pp. 1949-1960. [CrossRef]
  3. Arsénio, A.; Serra, H.; Francisco, R.; Nabais, F.; Andrade, J.; Serrano, E. Internet of Intelligent Things: Bringing Artificial Intelligence into Things and Communication Networks. In Inter-Cooperative Collective Intelligence: Techniques and Applications; Xhafa, F., Bessis, N., Eds.; Studies in Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2014; Volume 495, pp. 1-37. [CrossRef]
  4. Fortino, G.; Rovella, A.; Russo, W.; Savaglio, C. On the Classification of Cyberphysical Smart Objects in the Internet of Things. In Proceedings of the CEUR Workshop on UBICITEC-2014-Networks of Cooperating Objects for Smart Cities 2014, Berlin, Germany, 4 April 2014; Volume 1156, pp. 86-94.
  5. Muggleton, S.H.; Schmid, U.; Zeller, C.; Tamaddoni-Nezhad, A.; Besold, T. Ultra-Strong Machine Learning: comprehensibility of programs learned with ILP. Mach. Learn. 2018, 107, 1119-1140. [CrossRef]
  6. Besold, T.R.; Garcez, A.D.; Stenning, K.; van der Torre, L.; van Lambalgen, M. Reasoning in Non-probabilistic Uncertainty: Logic Programming and Neural-Symbolic Computing as Examples. Minds Mach. 2017, 27, 37-77. [CrossRef]
  7. Brooks, R.A. Intelligence Without Reason. In Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI 1991);
  8. Brooks, R.A. Intelligence without Representation. Artif. Intell. 1991, 47, 139-159. [CrossRef]
  9. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436-444. [CrossRef] [PubMed]
  10. Chen, X.W.; Lin, X. Big Data Deep Learning: Challenges and Perspectives. IEEE Access 2014, 2, 514-525. [CrossRef]
  11. Najafabadi, M.M.; Villanustre, F.; Khoshgoftaar, T.M.; Seliya, N.; Wald, R.; Muharemagic, E. Deep learning applications and challenges in big data analytics. J. Big Data 2015, 2, 1. [CrossRef]
  12. Association for Computing Machinery US Public Policy Council (USACM). Statement on Algorithmic Transparency and Accountability. 2017. Available online: https://www.acm.org/binaries/content/assets/ public-policy/2017_usacm_statement_algorithms.pdf (accessed on 1 July 2018).
  13. EU Commission. Algorithmic Awareness-Building. 2018. Available online: https://ec.europa.eu/digital- single-market/en/algorithmic-awareness-building (accessed on 1 July 2018).
  14. Dix, A. Human-computer interaction, foundations and new paradigms. J. Vis. Lang. Comput. 2017, 42, 122-134. [CrossRef]
  15. Garnelo, M.; Arulkumaran, K.; Shanahan, M. Towards deep symbolic reinforcement learning. In Proceedings of the Neural Information Processing Systems (NIPS) 2016-Workshop on Deep Reinforcement Learning, Barcelona, Spain, 5-10 December 2016.
  16. Marcus, G. Deep Learning: A Critical Appraisal. ArXiv 2018, arxiv:1801.00631.
  17. Hatcher, W.G.; Yu, W. A Survey of Deep Learning: Platforms, Applications and Emerging Research Trends. IEEE Access 2018, 6, 24411-24432. [CrossRef]
  18. Fortino, G.; Russo, W.; Savaglio, C.; Shen, W.; Zhou, M. Agent-Oriented Cooperative Smart Objects: From IoT System Design to Implementation. IEEE Trans. Syst. Man Cybern. Syst. 2017, 1-18. [CrossRef]
  19. Calegari, R.; Denti, E.; Mariani, S.; Omicini, A. Logic Programming as a Service (LPaaS): Intelligence for the IoT. In Proceedings of the 2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC 2017), Calabria, Italy, 16-18 May 2017; pp. 72-77. [CrossRef]
  20. Calegari, R.; Denti, E.; Mariani, S.; Omicini, A. Logic Programming as a Service. Theory Pract. Logic Program. 2018, 18, 1-28. [CrossRef]
  21. Calegari, R.; Ciatto, G.; Mariani, S.; Denti, E.; Omicini, A. Micro-intelligence for the IoT: SE Challenges and Practice in LPaaS. In Proceedings of the 2018 IEEE International Conference on Cloud Engineering (IC2E 2018), IEEE Computer Society, Orlando, FL, USA, 17-20 April 2018; pp. 292-297. [CrossRef]
  22. Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. 2013, 29, 1645-1660. [CrossRef]
  23. Botta, A.; De Donato, W.; Persico, V.; Pescapé, A. On the Integration of Cloud Computing and Internet of Things. In Proceedings of the 2014 International Conference on Future Internet of Things and Cloud (FiCloud 2014), Barcelona, Spain, 27-29 August 2014; pp. 23-30. [CrossRef]
  24. Perera, C.; Zaslavsky, A.; Christen, P.; Georgakopoulos, D. Context Aware Computing for The Internet of Things: A Survey. IEEE Commun. Surv. Tutor. 2014, 16, 414-454. [CrossRef]
  25. Zhou, L.; Pan, S.; Wang, J.; Vasilakos, A.V. Machine learning on big data: Opportunities and challenges. Neurocomputing 2017, 237, 350-361. [CrossRef]
  26. Agerri, R.; Bermudez, J.; Rigau, G. IXA pipeline: Efficient and Ready to Use Multilingual NLP tools. In Proceedings of the 9th Language Resources and Evaluation Conference (LREC 2014), Reykjavik, Iceland, 26-31 May 2014; pp. 3823-3828.
  27. Bologna, G.; Hayashi, Y. A Rule Extraction Study from SVM on Sentiment Analysis. Big Data Cogn. Comput. 2018, 2, 6. [CrossRef]
  28. Hoehndorf, R.; Queralt-Rosinach, N. Data science and symbolic AI: Synergies, challenges and opportunities. Data Sci. 2017, 1, 27-38. [CrossRef]
  29. Consortium, G.O. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 2004, 32, D258-D261. [CrossRef] [PubMed]
  30. Brownlee, J. Clever Algorithms: Nature-Inspired Programming Recipes; Lulu Press: Morrisville, NC, USA, 2011.
  31. Palù, A.D.; Torroni, P. 25 Years of Applications of Logic Programming in Italy. In A 25-Year Perspective on Logic Programming; Dovier, A., Pontelli, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 300-328. [CrossRef]
  32. Veanes, M.; Hooimeijer, P.; Livshits, B.; Molnar, D.; Bjorner, N. Symbolic Finite State Transducers: Algorithms and Applications. ACM SIGPLAN Not. 2012, 47, 137-150. [CrossRef]
  33. Belta, C.; Bicchi, A.; Egerstedt, M.; Frazzoli, E.; Klavins, E.; Pappas, G.J. Symbolic planning and control of robot motion [Grand Challenges of Robotics]. IEEE Robot. Autom. Mag. 2007, 14, 61-70. [CrossRef]
  34. Martelli, M. Constraint logic programming: Theory and applications. In 1985-1995: Ten Years of Logic Programming in Italy; Sessa, M., Ed.; Palladio Editrice: Salerno, Italy, 1995; pp. 137-166.
  35. Rosenberg, D.; Boehm, B.; Wang, B.; Qi, K. Rapid, Evolutionary, Reliable, Scalable System and Software Development: The Resilient Agile Process. In Proceedings of the 2017 International Conference on Software and System Process (ICSSP 2017), Paris, France, 5-7 July 2017; pp. 60-69. [CrossRef]
  36. Familiar, B. Microservices, IoT, and Azure: Leveraging DevOps and Microservice Architecture to Deliver SaaS Solutions, 1st ed.; Apress: Berkely, CA, USA, 2015.
  37. Erl, T. Service-Oriented Architecture: Concepts, Technology, and Design; Prentice Hall/Pearson Education International: Upper Saddle River, NJ, USA , 2005.
  38. Rahman, H.; Rahmani, R. Enabling distributed intelligence assisted Future Internet of Things Controller (FITC). Appl. Comput. Inform. 2018, 14, 73-87. [CrossRef]
  39. Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog Computing and Its Role in the Internet of Things. In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing (MCC 2012), Helsinki, Finland, 17 August 2012; pp. 13-16. [CrossRef]
  40. Calegari, R.; Denti, E.; Dovier, A.; Omicini, A. Extending Logic Programming with Labelled Variables: Model and Semantics. Fundam. Inform. 2018, 161, 53-74. [CrossRef]
  41. Calegari, R.; Denti, E.; Dovier, A.; Omicini, A. Labelled Variables in Logic Programming: Foundations. In Proceedings of the CILC 2016-Italian Conference on Computational Logic, Milano, Italy, 20-22 June 2016; CEUR-WS: Milano, Italy, 2016; Volume 1645, pp. 5-20.
  42. Robinson, J.A. A Machine-Oriented Logic Based on the Resolution Principle. J. ACM 1965, 12, 23-41. [CrossRef]
  43. De, S.; Barnaghi, P.; Bauer, M.; Meissner, S. Service modelling for the Internet of Things. In Proceedings of the Federated Conference on Computer Science and Information Systems (FedCSIS 2011), Szczecin, Poland, 18-21 September 2011; pp. 949-955.
  44. Calegari, R.; Ciatto, G.; Mariani, S.; Denti, E.; Omicini, A. Logic Programming in Space-Time: The Case of Situatedness in LPaaS. In Proceedings of the WOA 2018-19th Workshop "From Objects to Agents", Palermo, Italy, 28-29 June 2018; in press.
  45. Deransart, P.; Dbali, A.E.; Cervoni, L. Prolog: The Standard. Reference Manual; Springer: New York, NY, USA, 1996. [CrossRef]
  46. Beierle, C.; Hedtstück, U.; Pletat, U.; Schmitt, P.; Siekmann, J. An order-sorted logic for knowledge representation systems. Artif. Intell. 1992, 55, 149-191. [CrossRef]
  47. Calegari, R.; Denti, E.; Mariani, S.; Omicini, A. Logic Programming as a Service in Multi-Agent Systems for the Internet of Things. Int. J. Grid Util. Comput. 2018, in press.
  48. Fielding, R.T. Architectural Styles and the Design of Network-based Software Architectures. PhD Thesis, University of California, Irvine, CA, USA, 2000.
  49. LPaaS. Home Page. Available online: http://lpaas.apice.unibo.it/ (accessed on 1 July 2018).
  50. Humble, J.; Farley, D. Continuous Delivery: Reliable Software Releases Through Build, Test, and Deployment Automation; Addison-Wesley/Pearson Education: Boston, MA, USA, 2010.
  51. Duvall, P.M.; Matyas, S.; Glover, A. Continuous Integration: Improving Software Quality and Reducing Risk; Addison-Wesley/Pearson Education: Boston, MA, USA, 2007.
  52. Gómez, M.; Cámara, M.Á.; Jiménez, E.; Martínez-Cámara, E. A new energetic scenario with renewable energy. In Proceedings of the International Conference on Renewable Energies and Power Quality (ICREPQ 2010), Granada, Spain, 23-25 March 2010.
  53. Fallah, S.N.; Deo, R.C.; Shojafar, M.; Conti, M.; Shamshirband, S. Computational Intelligence Approaches for Energy Load Forecasting in Smart Energy Management Grids: State of the Art, Future Challenges, and Research Directions. Energies 2018, 11, 596. [CrossRef]
  54. Sharma, N.; Sharma, P.; Irwin, D.; Shenoy, P. Predicting solar generation from weather forecasts using machine learning. In Proceedings of the IEEE International Conference on Smart Grid Communications (SmartGridComm 2011), Brussels, Belgium, 17-20 October 2011; pp. 528-533. [CrossRef]
  55. Clastres, C. Smart grids: Another step towards competition, energy security and climate change objectives. Energy Policy 2011, 39, 5399-5408. [CrossRef]
  56. Yu, X.; Cecati, C.; Dillon, T.; Simões, G.M. The New Frontier of Smart Grids. IEEE Ind. Electron. Mag. 2011, 5, 49-63. [CrossRef]
  57. Vonk, B.M.J.; Nguyen, P.H.; Grand, M.O.W.; Slootweg, J.G.; Kling, W.L. Improving Short-term load forecasting for a local energy storage system. In Proceedings of the 47th International Universities Power Engineering Conference (UPEC 2012), London, UK, 4-7 September 2012. [CrossRef]
  58. Wijaya, T.K.; Eberle, J.; Aberer, K. Symbolic Representation of Smart Meter Data. In Proceedings of the Joint EDBT/ICDT 2013 Workshops (EDBT 2013), Genoa, Italy, 18-22 March 2013; pp. 242-248. [CrossRef]
  59. Hernández, L.; Baladrón, C.; Aguiar, J.M.; Carro, B.; Sánchez-Esguevillas, A.; Lloret, J. Artificial neural networks for short-term load forecasting in microgrids environment. 2014, 75, 252-264. [CrossRef]
  60. Marino, D.L.; Amarasinghe, K.; Manic, M. Building energy load forecasting using Deep Neural Networks. In Proceedings of the 42nd Annual Conference of the IEEE Industrial Electronics Society (IECON 2016), Florence, Italy, 23-26 October 2016; pp. 7046-7051. [CrossRef]
  61. Van den Abeele, F.; Hoebeke, J.; Teklemariam, G.K.; Moerman, I.; Demeester, P. Sensor Function Virtualization to Support Distributed Intelligence in the Internet of Things. Wirel. Pers. Commun. 2015, 81, 1415-1436. [CrossRef]
  62. Pontelli, E.; Cao Son, T.; Baral, C. A Logic Programming Based Framework for Intelligent Web Service Composition. In Managing Web Service Quality: Measuring Outcomes and Effectiveness; Khaled, M.K., Ed.; IGI Global: Hershey, PA, USA, 2009; pp. 193-221. [CrossRef]
  63. Gaglio, S.; Lo Re, G.; Martorella, G.; Peri, D. High-Level Programming and Symbolic Reasoning on IoT Resource Constrained Devices. In Internet of Things. User-Centric IoT; Giaffreda, R., Vieriu, R.L., Pasher, E., Bendersky, G., Jara, A.J., Rodrigues, J.J., Dekel, E., Mandler, B., Eds.; Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (LNICST); Springer: Cham, Switzerland, 2015; Volume 150, pp. 58-63. [CrossRef]
  64. Gupta, P.; Mokal, T.P.; Shah, D.D.; Satyanarayana, K.V.V. Event-Driven SOA-Based IoT Architecture. In International Conference on Intelligent Computing and Applications; Dash, S.S., Das, S., Panigrahi, B.K., Eds.; Advances in Intelligent Systems and Computing (AISC); Springer: Singapore, 2018; Volume 632, pp. 247-258. [CrossRef]
  65. Guerrero-Contreras, G.; Navarro-Galindo, J.L.; Samos, J.; Garrido, J.L. A collaborative semantic annotation system in health: Towards a SOA design for knowledge sharing in ambient intelligence. Mob. Inf. Syst. 2017, 2017, 4759572. [CrossRef]
  66. Malekzadeh, B. Event-Driven Architecture and SOA in Collaboration-A sTudy of How Event-Driven Architecture (EDA) Interacts and Functions Within Service-Oriented Architecture (SOA). Master's Thesis, University of Gothenburg, Gothenburg, Sweden, 2010.
  67. Zarri, G.P. High-Level Knowledge Representation and Reasoning in a Cognitive IoT/WoT Context. In Cognitive Computing for Big Data Systems Over IoT: Frameworks, Tools and Applications; Sangaiah, A.K., Thangavelu, A., Meenakshi Sundaram, V., Eds.; Lecture Notes on Data Engineering and Communications Technologies (LNDECT); Springer: Cham, Switzerland, 2018; Volume 14, pp. 223-262. [CrossRef]
  68. Ghosh, J.; Taha, I. A neuro-symbolic hybrid intelligent architecture with applications. In Recent Advances in Artificial Neural Networks; Jain, L.C., Fanelli, A.M., Eds.; CRC Press: Boca Raton, FL, USA, 2000; pp. 2-37.
  69. McGarry, K.; Wermter, S.; MacIntyre, J. Hybrid neural systems: From simple coupling to fully integrated neural networks. Neural Comput. Surv. 1999, 2, 62-93.
  70. LPaaS tuProlog. Home Page. 2017. Available online: https://bitbucket.org/tuProlog/lpaas-tuprolog/ (accessed on 1 July 2018).
  71. Denti, E.; Omicini, A.; Ricci, A. tuProlog: A Light-weight Prolog for Internet Applications and Infrastructures. In Proceedings of the Practical Aspects of Declarative Languages, 3rd International Symposium (PADL 2001), Las Vegas, NV, USA, 11-12 March 2001; Ramakrishnan, I.V., Ed.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2001; Volume 1990, pp. 184-198. [CrossRef]
  72. Didona, D.; Romano, P.; Peluso, S.; Quaglia, F. Transactional Auto Scaler: Elastic Scaling of Replicated In-Memory Transactional Data Grids. ACM Trans. Auton. Adapt. Syst. 2014, 9, 1-32. [CrossRef]
  73. Duarte, F.; Gil, R.; Romano, P.; Lopes, A.; Rodrigues, L. Learning Non-deterministic Impact Models for Adaptation. In Proceedings of the 13th International Conference on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2018), Gothenburg, Sweden, 28-29 May 2018; ACM: New York, NY, USA, 2018; pp. 196-205. [CrossRef]
  74. Didona, D.; Felber, P.; Harmanci, D.; Romano, P.; Schenker, J. Identifying the optimal level of parallelism in transactional memory applications. Computing 2015, 97, 939-959. [CrossRef]