Academia.eduAcademia.edu

Outline

Computational Aspects of Lattice QCD

2003

Abstract

Monte Carlo simulations applied to the lattice formulation of quantum chromodynamics (QCD) enable a study of the theory from first principles, in a nonperturbative way. After over two decades of developments in the methodology for this study and with present-day computers in the teraflops range, lattice-QCD simulations are now able to provide quantitative predictions with errors of a few percent. This means that these simulations will soon become the main source of theoretical results for comparison with experiments in physics of the strong interactions. It is therefore an important moment for the beginning of Brazilian participation in the field.

References (16)

  1. An Elementary Primer for Gauge Theory, K. Moriyasu, (World Scientific, Singapore, 1983).
  2. Lattice gauge theories. An introduction, H.J. Rothe, (World Scientific, Singapore, 1997).
  3. A guide to Monte Carlo simulations in Statistical Physics, D.P. Landau and K. Binder, (Cambridge University Press, Cambridge, 2000).
  4. The resulting computer power is of approximately 20 Gf lops for peak performance.
  5. Quantum chromodynamics, I. Hinchliffe, in Review of particle physics, Particle Data Group (K. Hagiwara et al.), Phys. Rev. D 66 (2002) 010001.
  6. Quenched light hadron spectrum, S. Aoki et al. (CP-PACS collaboration), Phys. Rev. Lett. 84, 238 (2000).
  7. Lattice QCD at high temperature and density, F. Karsch, Lect. Notes Phys. 583, 209 (2002).
  8. Quantum and Statistical Field Theory, M. Le Bellac, (Oxford University Press, Oxford, 1995).
  9. Confinement of Quarks, K.G. Wilson, Phys. Rev. D10, 2445 (1974).
  10. Proceedings of the International Symposium on lattice field theory, Nucl. Phys. B (Proc. Suppl.) 106-107 (2002) and previous years.
  11. Lattice simulations for the running coupling constant of QCD, A. Cuc- chieri, presented at Hadron Physics 2002, Bento Gonçalves, April 14-19, 2002, http://arXiv.org/abs/hep-lat/0209076.
  12. Progress in lattice gauge theory, S.R. Sharpe, in Vancouver 1998, High energy physics, vol. 1, 171-190, http://arXiv.org/abs/hep-lat/ 9811006.
  13. Running coupling constant and propagators in SU(2) Landau gauge, J.C. Bloch, A. Cucchieri, K. Langfeld and T. Mendes, Nucl. Phys. B (Proc. Suppl.) 119, 736 (2003), http://arXiv.org/abs/hep-lat/0209040.
  14. SU(2) Landau gluon propagator on a 140 3 lattice, A. Cucchieri, T. Mendes and A.R. Taurines, Phys. Rev. D 67, 091502 (2003)
  15. Critical slowing-down in SU(2) Landau-gauge-fixing algorithms at β = ∞, A. Cucchieri and T. Mendes, Comput. Phys. Commun. 154, 1 (2003).
  16. Study of scaling at the chiral phase transition using 2-flavor lattice QCD data, T. Mendes, to appear in the Proceedings of Hadron Physics 2002, Bento Gonçalves, April 14-19, 2002.