Academia.eduAcademia.edu

Outline

Error and attack tolerance of complex networks

2004, Physica A: Statistical …

https://doi.org/10.1016/J.PHYSA.2004.04.031

Abstract
sparkles

AI

The paper explores the error and attack tolerance of complex networks, highlighting the differences between scale-free networks and random networks. It demonstrates that scale-free networks, while robust to random errors, are highly vulnerable to targeted attacks on critical nodes. A dynamical model is presented to illustrate the cascading failures that can result from the malfunction of a single component, emphasizing the importance of protecting scale-free networks from attacks given their real-world prevalence.

FAQs

sparkles

AI

What key property differentiates scale-free networks from random networks?add

Scale-free networks exhibit a power-law degree distribution P(k) ∼ k^(-α) with α between 2 and 3, contrasting with the Poissonian distribution of random networks.

How does node removal affect the efficiency of scale-free networks?add

The study reveals that removing 15% of nodes through targeted attacks reduces the efficiency of scale-free networks to about 0.33, with total destruction at 35% removal.

Which attack strategies are most impactful on network robustness?add

Degree-based attacks lead to rapid efficiency decline in scale-free networks, while in Erdős-Rényi graphs, differences in attack impact are less pronounced.

What models explain cascading failures in real-world networks?add

A dynamical model demonstrates that when critical nodes are removed, cascading effects can lead to network-wide failures, prevailing in systems like the Internet.

How does load redistribution influence network performance after node failure?add

Load redistribution causes congestion in unaffected nodes, which can result in communication delays, further propagating degradation across the network.

References (20)

  1. S.N. Dorogovtesev, J.F.F. Mendes, Evolution of Networks, Oxford University Press, Oxford, 2003.
  2. S.H. Strogatz, Exploring complex networks, Nature 10 (2001) 268.
  3. R. Albert, H. Jeong, A.-L. Barabà asi, Nature 401 (1999) 130.
  4. A.-L. Barabà asi, R. Albert, Science 286 (1999) 509.
  5. M. Faloutsos, P. Faloutsos, C. Faloutsos, Comput. Comm. Rev. 29 (1999) 251.
  6. W. Li, X. Cai, cond-mat/0309236.
  7. H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, A.-L. Barabà asi, Nature 407 (2000) 651.
  8. H. Jeong, S.P. Mason, A.-L. Barabà asi, Z.N. Oltvai, Nature 411 (2001) 41.
  9. P. Erd os, A. RÃ enyi, Publ. Math. 6 (1959) 290.
  10. R. Albert, A.-L. Barabà asi, Rev. Mod. Phys. 74 (2002) 47.
  11. S. Wasserman, K. Faust, Social Networks Analysis, Cambridge University Press, Cambridge, 1994.
  12. R. Albert, H. Jeong, A.-L. Barabà asi, Nature 406 (2000) 378;
  13. R. Albert, H. Jeong, A.-L. Barabà asi, Correction, Nature 409 (2001) 542.
  14. P. Crucitti, V. Latora, M. Marchiori, A. Rapisarda, Physica A 320 (2003) 622.
  15. P. Holme, B.J. Kim, Phys. Rev. E 65 (2002) 066109.
  16. A.E. Motter, Y. Lai, Phys. Rev. E 66 (2002) 065102(R).
  17. Y. Moreno, R. Pastor-Satorras, A. VÃ asquez, A. Vespignani, Europhys. Lett. 62 (2003) 292.
  18. P. Crucitti, V. Latora, M. Marchiori, cond-mat/0309141 and Phys. Rev. E 69 (2004) 045104 (R).
  19. V. Latora, M. Marchiori, Phys. Rev. Lett. 87 (2001) 198701.
  20. V. Latora, M. Marchiori, Europ. Phys. J. B 32 (2003) 249.