Academia.eduAcademia.edu

Outline

Agent-Based Simulation of Ecological Models

2004, Agent-Based Simulation

Abstract
sparkles

AI

The management of coastal ecosystems is challenged by complex environmental interactions and anthropogenic pressures, necessitating effective decision-making processes. This paper introduces an agent-based simulation framework as a tool to address these challenges, allowing for better prediction and evaluation of management options. By integrating the influence of management decisions into ecological models, the proposed system aims to improve the sustainability of coastal ecosystem management.

References (17)

  1. Bacher, C., Duarte, P., Ferreira, J.G., Héral, M. & O. Raillard. 1998. Assessment and comparison of the Marennes- Oléron Bay (France) and Carlingford Lough (Ireland) Carrying Capacity with ecosystem models. Aquatic Ecol- ogy 31 (4): 379 -394.
  2. Duarte, P., Meneses, R., Hawkins, A.J.S., Zhu, M., Fang, J. & J. Grant. 2003. Mathematical modelling to assess the car- rying capacity for multi-species culture within coastal wa- ters, Ecological Modelling 168 (2003): 109-143.
  3. European Commission. 2003. "Development of an Informa- tion Technology Tool for the Management of European Southern Lagoons under the influence of river-basin run- off -The DITTY Project". S.P.I.03.135, Directorate- General of Joint Research Centre, Institute for Environ- ment and Sustainability.
  4. Hawkins, A. J. S., Duarte, P., Fang, J. G., Pascoe, P. L., Zhang, J. H., Zhang, X. L. & M. Zhu. 2002. A functional simulation of responsive filter-feeding and growth in bi- valve shellfish, configured and validated for the scallop Chlamys farreri during culture in China. Journal of Ex- perimental Marine Biology and Ecology 281: 13-40.
  5. Iglesias, C.A., González, J.C. & Velasco, J.R. 1996. MIX: A General Purpose MultiAgent Architecture, in M.Wooldridge, J.P.Mueller and M.Tambe, editors, Intelli- gent Agents Volume II, Springer-Verlag.
  6. Jørgensen, S.E. & G. Bendoricchio. 2001. Fundamentals of Ecological Modelling, Elsevier Science Ltd, 3 rd edition.
  7. Knauss, J.A. 1997. Introduction to Physical Oceanography, Prentice-Hall, Englewood Cliffs, NJ.
  8. Malone, T. & Crowston, K. 1991. Towards an Interdiscipli- nary Theory of Coordination, Technical Report 120, Cam- bridge, MA, MIT, Center for Coordination Science Mesplé, F., Troussellier, M., Casellas, C. & P. Legendre. 1995. Evaluation of simple statistical criteria to quality a simulation, Ecological Modelling 88 (1996): 9-18.
  9. Naur, P. (ed.). 1960. "Revised Report on the Algorithmic Language ALGOL 60.", Communications of the ACM, Vol. 3 No.5 (May), 299-314.
  10. Neves, R.J.J. 1985. Ètude expérimentale et modélisation mathématique des circulations transitoire et residuelle dans l'éstuaire du Sado, Ph.D thesis, Université de Liège.
  11. Norvig, P. & Russel, S.J. 1995. Artificial Intelligence: a mod- ern approach, Englewood Cliffs, Prentice Hall.
  12. Reis, L.P. & Lau, N. 2002. "COACH UNILANG -A Standard Language for Coaching a (Robo) Soccer Team", in Ro- boCup 2001: Robot Soccer World Cup V, Eds. Andreas Birk, Silvia Coradeschi, Satoshi Tadokoro, Lecture Notes on Artificial Intelligence V.2377, 183-192, Springer.
  13. Reis, L.P. 2003. Coordenação em Sistemas Multi-Agente: Aplicações na gestão Universitária e no Futebol Robótico, PhD Thesis, Faculty of Engineering of the Univ. Porto.
  14. Scholten H. & M.W.M. Van der Tol. 1998. Quantitative vali- dation of deterministic models: when is a model accept- able? Proceedings of the Summer Computer Simulation Conference, SCS, San Diego, CA, USA: 404-409 (ISBN # 1-56555-149-4)
  15. Vreugdenhil, C.B. 1989. Computational hydraulics, An intro- duction, Springer-Verlag
  16. Weiss, G. 1999. ed., Multi-Agent Systems: A Modern Ap- proach to Distributed Artificial Intelligence, MIT Press.
  17. Wooldridge, M. 2002. An Introduction to Multi-Agent Sys- tems, John Wiley & Sons, Ltd.