Academia.eduAcademia.edu

Outline

Monadic translation of classical sequent calculus

2013

Abstract

We study monadic translations of the call-by-name (cbn) and the call-by-value (cbv) fragments of the classical sequent calculus λµμ by Curien and Herbelin and give modular and syntactic proofs of strong normalization. The target of the translations is a new metalanguage for classical logic, named monadic λµ. It is a monadic reworking of Parigot's λµ-calculus, where the monadic binding is confined to commands, thus integrating the monad with the classical features. Also its µ-reduction rule is replaced by one expressing the interaction between monadic binding and µ-abstraction. Our monadic translations produce very tight simulations of the respective fragments of λµμ inside monadic λµ, with reduction steps of λµμ being translated in 1-1 fashion, except for β-steps which require two steps. The monad of monadic λµ can be instantiated to the continuations monad so as to ensure strict simulation of monadic λµ inside simply-typed λ-calculus with βand η-reduction. Through strict simulation, strong normalization of simply-typed λ-calculus is inherited to monadic λµ and then to cbn and cbv λµμ, thus reproving in an elementary syntactical way strong normalization for these fragments of λµμ and establishing it for our new calculus. These results extend to second-order logic, with polymorphic λ-calculus as target, giving new strong normalization results for classical second-order logic in sequent calculus style. CPS translations of cbn and cbv λµμ with the strict simulation property are obtained by composing our monadic translations with the continuations-monad instantiation. In an appendix to the article we investigate several refinements of the continuations-monad instantiation in order to obtain in a modular way improvements of the CPS translations enjoying extra properties like simulation by cbv β-reduction or reduction of administrative redexes at compile time. † The first and fourth author have been financed by FEDER funds through "Programa Operacional Factores de Competitividade-COMPETE" and by Portuguese funds through FCT-"Fundação para a Ciência e a Tecnologia", within the project PEst-C/MAT/UI0013/2011. ‡ The second author thanks the Centro de Matemática of Universidade do Minho for funding research visits to the first and fourth author. § The third author has been supported by the Kyoto University Foundation for an extended research visit to the second author.

References (31)

  1. Asada, K. (2008). Extensional universal types for call-by-value. In Ramalingam, G., editor, The 6th Asian Symposium on Programming Languages and Systems (APLAS 2008), volume 5356 of LNCS, pages 122- 137. Springer Verlag.
  2. Barthe, G., Hatcliff, J., and Sørensen, M. H. (2001). Weak normalization implies strong normalization in a class of non-dependent pure type systems. Theoretical Computer Science, 269(1-2):317-361.
  3. Barthe, G. and Sørensen, M. H. (2000). Domain-free pure type systems. Journal of Functional Program- ming, 10(5):417-452.
  4. Curien, P.-L. and Herbelin, H. (2000). The duality of computation. In Proc. of ICFP 2000, pages 233-243. IEEE. (Errata available from the second author's homepage).
  5. Curien, P.-L. and Munch-Maccagnoni, G. (2010). The duality of computation under focus. In Calude, C. S. and Sassone, V., editors, IFIP TCS, volume 323 of IFIP, pages 165-181. Springer.
  6. Danvy, O. and Filinski, A. (1992). Representing control: a study of the CPS transformation. Mathematical Structures in Computer Science, 2(4):361-391.
  7. David, R. and Nour, K. (2007). Arithmetical proofs of strong normalization results for symmetric λ-calculi. Fundamenta Informaticae, 77(4):489-510.
  8. Dyckhoff, R. and Lengrand, S. (2007). Call-by-value λ-calculus and LJQ. Journal of Logic and Computa- tion, 17(6):1109-1134.
  9. Espírito Santo, J., Matthes, R., and Pinto, L. (2007). Continuation-passing style and strong normalisation for intuitionistic sequent calculi. In Ronchi Della Rocca, S., editor, Proc. of TLCA 2007, volume 4583 of LNCS, pages 133-147. Springer Verlag.
  10. Espírito Santo, J., Matthes, R., and Pinto, L. (2009a). Continuation-passing style and strong normalisation for intuitionistic sequent calculi. Logical Methods in Computer Science, 5(2:11).
  11. Espírito Santo, J., Matthes, R., and Pinto, L. (2009b). Monadic translation of intuitionistic sequent calculus. In Berardi, S., Damiani, F., and de'Liguoro, U., editors, Post-proc. of TYPES 2008, volume 5497 of LNCS, pages 100-116. Springer-Verlag.
  12. Fujita, K. (1999). Explicitly typed λµ-calculus for polymorphism and call-by-value. In Girard, J.-Y., editor, Proc. of TLCA 1999, volume 1581 of LNCS, pages 162-177. Springer-Verlag.
  13. Geuvers, H. (1993). Logics and Type Systems. Proefschrift (PhD thesis), University of Nijmegen.
  14. Girard, J.-Y. (1971). Une extension de l'interprétation de Gödel à l'analyse, et son application à l'élimination des coupures dans l'analyse et la théorie des types. In Fenstad, J. E., editor, Proceed- ings of the Second Scandinavian Logic Symposium, volume 63 of Studies in Logic and the Foundations of Mathematics, pages 63-92. North-Holland.
  15. Harper, R. and Lillibridge, M. (1993). Polymorphic type assignment and CPS conversion. Lisp and Sym- bolic Computation, 6(3-4):361-380.
  16. Hatcliff, J. and Danvy, O. (1994). A generic account of continuation-passing styles. In Proc. of POPL 1994, pages 458-471. ACM.
  17. Herbelin, H. (2005). C'est maintenant qu'on calcule -au coeur de la dualité. Habilitation thesis, University Paris 11.
  18. Hofmann, M. and Streicher, T. (2002). Completeness of continuation models for lambda-mu-calculus. Information and Computation, 179(2):332-355.
  19. Ikeda, S. and Nakazawa, K. (2006). Strong normalization proofs by CPS-translations. Information Pro- cessing Letters, 99:163-170.
  20. Lengrand, S. (2003). Call-by-value, call-by-name, and strong normalization for the classical sequent cal- culus. In Gramlich, B. and Lucas, S., editors, Post-proc. of WRS 2003, volume 86 of ENTCS. Elsevier. (Erratum available from the author's homepage).
  21. Matthes, R. (1999). Monotone fixed-point types and strong normalization. In Gottlob, G., Grandjean, E., and Seyr, K., editors, CSL, 12th International Workshop, Brno, Czech Republic, August 24-28, 1998, Proceedings, volume 1584 of LNCS, pages 298-312. Springer Verlag.
  22. Moggi, E. (1991). Notions of computation and monads. Information and Computation, 93(1):55-92.
  23. Nakazawa, K. and Tatsuta, M. (2003). Strong normalization proof with CPS-translation for second order classical natural deduction. Journal of Symbolic Logic, 68(3):851-859. Corrigendum: vol. 68 (2003), no. 4, pp. 1415-1416.
  24. Parigot, M. (1992). λµ-calculus: an algorithmic interpretation of classic natural deduction. In Int. Conf. Logic Prog. Automated Reasoning, volume 624 of LNCS, pages 190-201. Springer Verlag.
  25. Parigot, M. (1997). Proofs of strong normalisation for second order classical natural deduction. Journal of Symbolic Logic, 62(4):1461-1479.
  26. Plotkin, G. (1975). Call-by-name, call-by-value and the λ-calculus. Theoretical Computer Science, 1:125- 159.
  27. Polonovski, E. (2004). Strong normalization of λµμ with explicit substitutions. In Walukiewicz, I., editor, Proc. of FoSSaCS 2004, volume 2987 of LNCS, pages 423-437. Springer-Verlag.
  28. Rocheteau, J. (2005). λµ-calculus and duality: call-by-name and call-by-value. In (Ed.), J. G., editor, Proc. of RTA 2005, volume 3467 of LNCS, pages 204-218. Springer-Verlag.
  29. Sabry, A. and Wadler, P. (1997). A reflection on call-by-value. ACM Trans. Program. Lang. Syst., 19(6):916-941.
  30. Summers, A. J. (2011). Soundness and principal contexts for a shallow polymorphic type system based on classical logic. Logic Journal of the IGPL, 19(6):848-896.
  31. Urban, C. (2000). Classical Logic and Computation. Phd thesis, University of Cambridge.