Academia.eduAcademia.edu

Outline

Wiaux et al 2014 Geoderma

https://doi.org/10.1016/J.GEODERMA.2013.10.013

Abstract

At the scale of hillslopes, a detailed mechanistic understanding of the processes controlling OC stabilization is still lacking. Here, we aimed to study the impact of geomorphic and pedogenic processes on the distribution of OC quality (ability of OC to release carbon dioxide through metabolic pathways) along an agricultural hillslope in the Belgian loess belt. We collected soil cores at four topographic positions along the hillslope (summit, convex shoulder, backslope and footslope). We assessed (i) cumulative soil erosion using diagnostic soil horizons and the 137 Cs techniques, (ii) OC stocks and its quality (NaOCl-resistant OC), and (iii) reactive soil mineral phases (concentration of Fe, Al and Si in specific oxalate and dithionite-citrate-bicarbonate extractants). Our results show that ongoing erosion has resulted in a small amount of reactive soil phases (e.g. Fe and Al-oxyhydroxides) in the upper first meter of the most eroded soil profile (backslope position). The erosion observations show that this is related to the truncation and rejuvenation of the backslope soil profile by bringing unweathered and calcareous loess to the soil surface. As a consequence, the potential of soil to stabilize OC by molecular interactions with soil minerals is substantially reduced by erosion when calcareous loess is reached. This was supported by the observed amount of mineral-protected OC (using NaOCl-resistant OC as an indicator) which was significantly lower at the eroded midslope than at the other slope positions. The combined effect of geomorphic and pedogenic processes thus strongly impacts the distribution of soil OC quality along the hillslope. We observed a spatial differentiation of the labile OC pool (i.e. the OC not resistant to NaOCl) along the hillslope with a significant enrichment at the depositional site. The labile OC pool contributed 64 ± 5%, 69 ± 5%, 40 ± 22% and 49 ± 6% of total OC at the footslope, backslope, convex shoulder and summit, respectively. Despite the fact that a part of this high labile OC stock at the footslope (5.8 ± 0.2 kg OC m −2 ) can be protected from microbial degradation due to specific environmental conditions, our results suggest that a large part of this depositional OC stock has a high potential for mineralization given its quality.

References (63)

  1. Bauer, J., Weihermüller, L., Huisman, J.A., Herbst, M., Graf, A., Séquaris, J.M., Vereecken, H., 2012. Inverse determination of heterotrophic soil respiration response to temperature and water content under field conditions. Biogeochemistry 108, 119-134.
  2. Berhe, A.A., Kleber, M., 2013. Erosion, deposition, and the persistence of soil organic matter: Mechanistic considerations and problems with terminology. Earth Surf. Process. Landf. 38, 908-912.
  3. Berhe, A.A., Harte, J., Harden, J.W., Torn, M.S., 2007. The significance of the erosion- induced terrestrial carbon sink. Bioscience 57, 337-346.
  4. Berhe, A.A., Harden, J.W., Torn, M.S., Harte, J., 2008. Linking soil organic matter dynamics and erosion-induced terrestrial carbon sequestration at different landform positions. J. Geophys. Res. 113, G04039.
  5. Berhe, A.A., Harden, J.W., Torn, M.S., Kleber, M., Burton, S.D., Harte, J., 2012. Persistence of soil organic matter in eroding versus depositional landform positions. J. Geophys. Res. 117, G02019.
  6. Brahy, V., Deckers, J., Delvaux, B., 2002. Estimation of soil weathering stage and acid neutralizing capacity in a toposequence Luvisol-Cambisol on loess under deciduous forest in Belgium. Eur. J. Soil Sci. 51, 1-13.
  7. Burstein, G.T., 1997. The iron oxides: Structure, properties, reactions, occurrence and uses: R. M. Cornell and U. Schwertmann. 573 pp. VCH, Weinheim and New York, 1996. Corros. Sci. 39, 1499-1500 (ISBN: 3-527-28576-8).
  8. Carlisle, E., Steenwerth, K., Smart, D., 2006. Effects of land use on soil respiration-conversion of oak woodlands to vineyards. J. Environ. Qual. 35, 1396-1404.
  9. Choudhary, O.P., Gill, J.K., Bijay, S., 2013. Water-extractable carbon pools and microbial biomass carbon in sodic water-irrigated soils amended with gypsum and organic manures. Pedosphere 23, 88-97.
  10. Dahlgren, R.A., Walker, W.J., 1994. Solubility control of KCl extractable aluminum in soils with variable charge. Commun. Soil Sci. Plant Anal. 25, 2201-2214.
  11. Doetterl, S., Six, J., Van Wesemael, B., Van Oost, K., 2012. Carbon cycling in eroding landscapes: geomorphic controls on soil organic C pool composition and C stabilization. Glob. Change Biol. 18, 2218-2232.
  12. Dungait, J.A.J., Hopkins, D.W., Gregory, A.S., Whitmore, A.P., 2012. Soil organic matter turn- over is governed by accessibility not recalcitrance. Glob. Change Biol. 18, 1781-1796.
  13. Fowler, H.J., Kilsby, C.G., O'Connell, P.E., Burton, A., 2005. A weather-type conditioned multi-site stochastic rainfall model for the generation of scenarios of climatic vari- ability and change. J. Hydrol. 308, 50-66.
  14. Goidts, E., Van Wesemael, B., Crucifix, M., 2009. Magnitude and sources of uncertainties in soil organic carbon (SOC) stock assessments at various scales. Eur. J. Soil Sci. 60, 723-739.
  15. Harden, J.W., Sharpe, J.M., Parton, W.J., Ojima, D.S., Fries, T.L., Huntington, T.G., Dabney, S.M., 1999. Dynamic replacement and loss of soil carbon on eroding cropland. Glob. Biogeochem. Cycles 13, 885-901.
  16. Jacinthe, P.A., Lal, R., 2001. A mass balance approach to assess carbon dioxide evolution during erosional events. Land Degrad. Dev. 12, 329-339.
  17. Kaiser, M., Ellerbrock, R.H., Wulf, M., Dultz, S., Hierath, C., Sommer, M., 2012. The influence of mineral characteristics on organic matter content, composition, and stability of topsoils under long-term arable and forest land use. J. Geophys. Res. 117, G02018.
  18. Kleber, M., Johnson, M.G., 2010. Chapter 3 -advances in understanding the molecular structure of soil organic matter: implications for interactions in the environment. In: Donald, L.S. (Ed.), Advances in Agronomy. Academic Press, pp. 77-142.
  19. Kleber, M., Sollins, P., Sutton, R., 2007. A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry 85, 9-24.
  20. Kögel-Knabner, I., Ekschmitt, K., Flessa, H., Guggenberger, G., Matzner, E., Marschner, B., Von Lützow, M., 2008a. An integrative approach of organic matter stabilization in tem- perate soils: linking chemistry, physics, and biology. J. Plant Nutr. Soil Sci. 171, 5-13.
  21. Kögel-Knabner, I., Guggenberger, G., Kleber, M., Kandeler, E., Kalbitz, K., Scheu, S., Eusterhues, K., Leinweber, P., 2008b. Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry. J. Plant Nutr. Soil Sci. 171, 61-82.
  22. Krull, E.S., Baldock, J.A., Skjemstad, J.O., 2003. Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover. Funct. Plant Biol. 30, 207-222.
  23. Kuhn, N.J., van Oost, K., Cammeraat, E., 2012. Soil erosion, sedimentation and the carbon cycle. Catena 94, 1-2.
  24. Lal, R., 2003. Soil erosion and the global carbon budget. Environ. Int. 29, 437-450.
  25. Lannoo, 2009. Le grand Atlas de Ferraris. Lannoo, Tielt, Belgium.
  26. Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B., Flessa, H., 2006. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions -a review. Eur. J. Soil Sci. 57, 426-445.
  27. Manies, K.L., Harden, J.W., Kramer, L., Parton, W.J., 2001. Carbon dynamics within agricultural and native sites in the loess region of western Iowa. Glob. Change Biol. 7, 545-555.
  28. Marinari, S., Liburdi, K., Fliessbach, A., Kalbitz, K., 2010. Effects of organic management on water-extractable organic matter and C mineralization in European arable soils. Soil Tillage Res. 106, 211-217.
  29. Marschner, B., Brodowski, S., Dreves, A., Gleixner, G., Gude, A., Grootes, P.M., Hamer, U., Heim, A., Jandl, G., Ji, R., Kaiser, K., Kalbitz, K., Kramer, C., Leinweber, P., Rethemeyer, J., Schäffer, A., Schmidt, M.W.I., Schwark, L., Wiesenberg, G.L.B., 2008. How relevant is recalcitrance for the stabilization of organic matter in soils? J. Plant Nutr. Soil Sci. 171, 91-110.
  30. Mehra, O., Jackson, M., 1960. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Proc. 7th nat. Conf. Clays, pp. 317-327.
  31. Mikutta, R., Kaiser, K., 2011. Organic matter bound to mineral surfaces: Resistance to chemical and biological oxidation. Soil Biol. Biochem. 43, 1738-1741.
  32. Mikutta, R., Kleber, M., Jahn, R., 2005a. Poorly crystalline minerals protect organic carbon in clay subfractions from acid subsoil horizons. Geoderma 128, 106-115.
  33. Mikutta, R., Kleber, M., Kaiser, K., Jahn, R., 2005b. Review: organic matter removal from soils using hydrogen peroxide, sodium hypochlorite, and disodium peroxodisulfate. Soil Sci. Soc. Am. J. 69, 120-135.
  34. Mikutta, R., Kleber, M., Torn, M.S., Jahn, R., 2006. Stabilization of soil organic matter: asso- ciation with minerals or chemical recalcitrance? Biogeochemistry 77, 25-56.
  35. Nadeu, E., Berhe, A.A., De Vente, J., Boix-Fayos, C., 2012. Erosion, deposition and replace- ment of soil organic carbon in Mediterranean catchments: a geomorphological, isoto- pic and land use change approach. Biogeosciences 9, 1099-1111.
  36. Notebaert, B., Verstraeten, G., Vandenberghe, D., Marinova, E., Poesen, J., Govers, G., 2011. Changing hillslope and fluvial Holocene sediment dynamics in a Belgian loess catch- ment. J. Quat. Sci. 26, 44-58.
  37. Oades, J., 1988. The retention of organic matter in soils. Biogeochemistry 5, 35-70.
  38. Quine, T.A., 1995. Estimation of erosion rates from caesium-137 data: the calibration question. Sediment and water quality in river catchments. 307-329.
  39. Quinton, J.N., Govers, G., Van Oost, K., Bardgett, R.D., 2010. The impact of agricultural soil erosion on biogeochemical cycling. Nat. Geosci. 3, 311-314.
  40. Reyniers, M., Maertens, K., Vrindts, E., De Baerdemaeker, J., 2006. Yield variability related to landscape properties of a loamy soil in central Belgium. Soil Tillage Res. 88, 262-273.
  41. Rommens, T., Verstraeten, G., Lang, A., Poesen, J., Govers, G., Van Rompaey, A., Peeters, I., 2005. Soil erosion and sediment deposition in the Belgian oess belt during the Holocene: establishing a sediment budget for a small agricultural catchment. The Holocene 15, 1032-1043.
  42. Schmidt, M.W.I., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I.A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D.A.C., Nannipieri, P., Rasse, D.P., Weiner, F. Wiaux et al. / Geoderma 216 (2014) 36-47
  43. S., Trumbore, S.E., 2011. Persistence of soil organic matter as an ecosystem property. Nature 478, 49-56.
  44. Schwertmann, U., Taylor, R.M., 1989. Iron oxides. Minerals in Soil Environments.Soil Science Society of America 379-438.
  45. Siregar, A., Kleber, M., Mikutta, R., Jahn, R., 2005. Sodium hypochlorite oxidation reduces soil organic matter concentrations without affecting inorganic soil constituents. Eur. J. Soil Sci. 56, 481-490.
  46. Six, J., Elliott, E., Paustian, K., Doran, J., 1998. Aggregation and soil organic matter accumu- lation in cultivated and native grassland soils. Soil Sci. Soc. Am. J. 62, 1367-1377.
  47. Six, J., Conant, R., Paul, E., Paustian, K., 2002. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241, 155-176.
  48. Sleutel, S., Kader, M.A., Begum, S.A., de Neve, S., 2010. Soil-organic-matter stability in sandy cropland soils is related to land-use history. J. Plant Nutr. Soil Sci. 173, 19-29.
  49. Smith, S., Renwick, W., Buddemeier, R., Crossland, C., 2001. Budgets of soil erosion and de- position for sediments and sedimentary organic carbon across the conterminous United States. Glob. Biogeochem. Cycles 15, 697-707.
  50. Smith, S.V., Sleezer, R.O., Renwick, W.H., Buddemeier, R.W., 2005. Fates of eroded soil organic carbon: mississippi basin case study. Ecol. Appl. 15, 1929-1940.
  51. Sollins, P., Homann, P., Caldwell, B.A., 1996. Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma 74, 65-105.
  52. Stallard, R.F., 1998. Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial. Glob. Biogeochem. Cycles 12, 231-257.
  53. Stewart, C.E., Paustian, K., Conant, R.T., Plante, A.F., Six, J., 2007. Soil carbon saturation: concept, evidence and evaluation. Biogeochemistry 86, 19-31.
  54. Torn, M.S., Trumbore, S.E., Chadwick, O.A., Vitousek, P.M., Hendricks, D.M., 1997. Mineral control of soil organic carbon storage and turnover. Nature 389, 170-173.
  55. Van Oost, K., Govers, G., Van Muysen, W., 2003. A process-based conversion model for caesium-137 derived erosion rates on agricultural land: an integrated spatial approach. Earth Surf. Process. Landf. 28, 187-207.
  56. Van Oost, K., Govers, G., Quine, T.A., Heckrath, G., Olesen, J.E., De Gryze, S., Merckx, R., 2005a. Landscape-scale modeling of carbon cycling under the impact of soil redistribution: the role of tillage erosion. Glob. Biogeochem. Cycles 19, GB4014.
  57. Van Oost, K., Van Muysen, W., Govers, G., Deckers, J., Quine, T.A., 2005b. From water to tillage erosion dominated landform evolution. Geomorphology 72, 193-203.
  58. Van Oost, K., Quine, T.A., Govers, G., De Gryze, S., Six, J., Harden, J.W., Ritchie, J.C., McCarty, G.W., Heckrath, G., Kosmas, C., Giraldez, J.V., da Silva, J.R.M., Merckx, R., 2007. The impact of agricultural soil erosion on the global carbon cycle. Science 318, 626-629.
  59. Van Oost, K., Verstraeten, G., Doetterl, S., Notebaert, B., Wiaux, F., Broothaerts, N., Six, J., 2012. Legacy of human-induced C erosion and burial on soil-atmosphere C exchange. Proc. Natl. Acad. Sci. U. S. A. 109, 19492-19497.
  60. Vanden Berghe, L., Gulinck, H., 1987. Fallout 137 Cs as a tracer for soil mobility in the landscape framework of the Belgian loamy region. Pédologie 37, 5-20.
  61. VandenBygaart, A., 2001. Erosion and deposition history derived by depth-stratigraphy of 137 Cs and soil organic carbon. Soil Tillage Res. 61, 187-192.
  62. von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Flessa, H., Guggenberger, G., Matzner, E., Marschner, B., 2007. SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biol. Biochem. 39, 2183-2207.
  63. Walling, D.E., Quine, T.A., 1990. Calibration of caesium-137 measurements to provide quantitative erosion rate data. Land Degrad. Dev. 2, 161-175.