Abstract
Social media services make it possible for an increasing number of people to express their opinion publicly. In this context, large amounts of hateful comments are published daily. The PHARM project aims at monitoring and modeling hate speech against refugees and migrants in Greece, Italy, and Spain. In this direction, a web interface for the creation and the query of a multi-source database containing hate speech-related content is implemented and evaluated. The selected sources include Twitter, YouTube, and Facebook comments and posts, as well as comments and articles from a selected list of websites. The interface allows users to search in the existing database, scrape social media using keywords, annotate records through a dedicated platform and contribute new content to the database. Furthermore, the functionality for hate speech detection and sentiment analysis of texts is provided, making use of novel methods and machine learning models. The interface can be accessed online w...
References (61)
- Matsiola, M.; Dimoulas, C.A.; Kalliris, G.; Veglis, A.A. Augmenting User Interaction Experience Through Embedded Multimodal Media Agents in Social Networks. In Information Retrieval and Management; IGI Global: Hershey, PA, USA, 2018; pp. 1972-1993.
- Siapera, E.; Veglis, A. The Handbook of Global Online Journalism; John Wiley & Sons: Hoboken, NJ, USA, 2012.
- Katsaounidou, A.; Dimoulas, C.; Veglis, A. Cross-Media Authentication and Verification: Emerging Research and Opportunities; IGI Global: Hershey, PA, USA, 2018.
- Dimoulas, C.; Veglis, A.; Kalliris, G. Application of mobile cloud based technologies in news reporting: Current trends and future perspectives. In Joel Rodrigues; Lin, K., Lloret, J., Eds.; Mobile Networks and Cloud Computing Convergence for Progressive Services and Applications; IGI Global: Hershey, PA, USA, 2014; Chapter 17; pp. 320-343.
- Dimoulas, C.A.; Symeonidis, A.L. Syncing Shared Multimedia through Audiovisual Bimodal Segmentation. IEEE MultiMedia 2015, 22, 26-42. [CrossRef]
- Sidiropoulos, E.; Vryzas, N.; Vrysis, L.; Avraam, E.; Dimoulas, C. Growing Media Skills and Know-How in Situ: Technology- Enhanced Practices and Collaborative Support in Mobile News-Reporting. Educ. Sci. 2019, 9, 173. [CrossRef]
- Dimoulas, C.A.; Veglis, A.A.; Kalliris, G.; Khosrow-Pour, D.M. Semantically Enhanced Authoring of Shared Media. In Encyclopedia of Information Science and Technology, Fourth Edition; IGI Global: Hershey, PA, USA, 2018; pp. 6476-6487.
- Saridou, T.; Veglis, A.; Tsipas, N.; Panagiotidis, K. Towards a semantic-oriented model of participatory journalism management. Available online: https://coming.gr/wp-content/uploads/2020/02/2_2019_JEICOM_SPissue_Saridou_pp.-27-37.pdf (accessed on 18 March 2021).
- Cammaerts, B. Radical pluralism and free speech in online public spaces. Int. J. Cult. Stud. 2009, 12, 555-575. [CrossRef]
- Fortuna, P.; Nunes, S. A Survey on Automatic Detection of Hate Speech in Text. ACM Comput. Surv. 2018, 51, 1-30. [CrossRef]
- Davidson, T.; Warmsley, D.; Macy, M.; Weber, I. Automated hate speech detection and the problem of offensive language. In Proceedings of the International AAAI Conference on Web and Social Media, Palo Alto, CA, USA, 25-28 June 2017.
- Ekman, M. Anti-immigration and racist discourse in social media. Eur. J. Commun. 2019, 34, 606-618. [CrossRef]
- Burnap, P.; Williams, M.L. Hate speech, machine classification and statistical modelling of information flows on twitter: Interpre- tation and communication for policy decision making. In Proceedings of the 2014 Internet, Policy & Politics Conferences, Oxford, UK, 15-26 September 2014.
- Pohjonen, M.; Udupa, S. Extreme speech online: An anthropological critique of hate speech debates. Int. J. Commun. 2017, 11, 1173-1191.
- Ben-David, A.; Fernández, A.M. Hate speech and covert discrimination on social media: Monitoring the Facebook pages of extreme-right political parties in Spain. Int. J. Commun. 2016, 10, 1167-1193.
- Olteanu, A.; Castillo, C.; Boy, J.; Varshney, K. The effect of extremist violence on hateful speech online. In Proceedings of the twelfth International AAAI Conference on Web and Social Media, Stanford, CA, USA, 25-28 June 2018.
- Paz, M.A.; Montero-Díaz, J.; Moreno-Delgado, A. Hate Speech: A Systematized Review. SAGE Open 2020, 10. [CrossRef]
- Calvert, C. Hate Speech and Its Harms: A Communication Theory Perspective. J. Commun. 1997, 47, 4-19. [CrossRef]
- Boeckmann, R.J.; Turpin-Petrosino, C. Understanding the harm of hate crime. J. Soc. Issues 2002, 58, 207-225. [CrossRef]
- Anderson, P. What Is Web 2.0? Ideas, Technologies and Implications for Education; JISC: Bristol, UK, 2007.
- Kim, Y.; Lowrey, W. Who are Citizen Journalists in the Social Media Environment? Digit. J. 2014, 3, 298-314. [CrossRef]
- Quandt, T. Dark Participation. Media Commun. 2018, 6, 36-48. [CrossRef]
- Schmidt, A.; Wiegand, M. A Survey on Hate Speech Detection using Natural Language Processing. In Proceedings of the Fifth International Workshop on Natural Language Processing for Social Media, Valencia, Spain, 3 April 2017; pp. 1-10.
- Bruns, A. The active audience: Transforming journalism from gatekeeping to gatewatching. In Making Online News: The Ethnography of New Media Production; Paterson, C., Domingo, D., Eds.; Peter Lang: New York, NY, USA, 2008; pp. 171-184.
- Gillmor, D. We the media. Grassroots Journalism by the People, for the People; O'Reilly: Sebastopol, CA, USA, 2004.
- Hanitzsch, T.; Quandt, T. Online journalism in Germany. In The Handbook of Global Online Journalism; Siapera, E., Veglis, A., Eds.; Wiley-Blackwell: West Sussex, UK, 2012; pp. 429-444.
- Singer, J.B.; Hermida, A.; Domingo, D.; Heinonen, A.; Paulussen, S.; Quandt, T.; Reich, Z.; Vujnovic, M. Participatory Journalism. Guarding Open Gates at Online Newspapers; Wiley-Blackwell: Malden, MA, USA, 2018. [CrossRef]
- Obermaier, M.; Hofbauer, M.; Reinemann, C. Journalists as targets of hate speech. How German journalists perceive the consequences for themselves and how they cope with it. Stud. Commun. Media 2018, 7, 499-524. [CrossRef]
- Boberg, S.; Schatto-Eckrodt, T.; Frischlich, L.; Quandt, T. The Moral Gatekeeper? Moderation and Deletion of User-Generated Content in a Leading News Forum. Media Commun. 2018, 6, 58-69. [CrossRef]
- Wolfgang, J.D. Pursuing the Ideal. Digit. J. 2015, 4, 764-783. [CrossRef]
- Wintterlin, F.; Schatto-Eckrodt, T.; Frischlich, L.; Boberg, S.; Quandt, T. How to Cope with Dark Participation: Moderation Practices in German Newsrooms. Digit. J. 2020, 8, 904-924. [CrossRef]
- Masullo, G.M.; Riedl, M.J.; Huang, Q.E. Engagement Moderation: What Journalists Should Say to Improve Online Discussions. J. Pract. 2020, 1-17. [CrossRef]
- Hille, S.; Bakker, P. Engaging the social news user: Comments on news sites and Facebook. J. Pract. 2014, 8, 563-572. [CrossRef]
- Wang, S. Moderating Uncivil User Comments by Humans or Machines? The Effects of Moderation Agent on Perceptions of Bias and Credibility in News Content. Digit. J. 2021, 9, 64-83. [CrossRef]
- Risch, J.; Krestel, R. Delete or not delete? Semi-automatic comment moderation for the newsroom. In Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying, Santa Fe, NM, USA, 25 August 2018; pp. 166-176.
- MacAvaney, S.; Yao, H.-R.; Yang, E.; Russell, K.; Goharian, N.; Frieder, O. Hate speech detection: Challenges and solutions. PLoS ONE 2019, 14, e0221152. [CrossRef]
- Ayo, F.E.; Folorunso, O.; Ibharalu, F.T.; Osinuga, I.A. Machine learning techniques for hate speech classification of twitter data: State-of-the-art, future challenges and research directions. Comput. Sci. Rev. 2020, 38, 100311. [CrossRef]
- Gitari, N.D.; Zhang, Z.; Damien, H.; Long, J. A Lexicon-based Approach for Hate Speech Detection. Int. J. Multimed. Ubiquitous Eng. 2015, 10, 215-230. [CrossRef]
- Arcila-Calderón, C.; de la Vega, G.; Herrero, D.B. Topic Modeling and Characterization of Hate Speech against Immigrants on Twitter around the Emergence of a Far-Right Party in Spain. Soc. Sci. 2020, 9, 188. [CrossRef]
- Arcila-Calderón, C.; Herrero, D.B.; Frías, M.; Seoanes, F. Refugees Welcome? Online Hate Speech and Sentiments in Twitter 2 in Spain during the reception of the boat Aquarius. Sustainability 2021, 13, 2728. [CrossRef]
- Arcila-Calderón, C.; Blanco-Herrero, D.; Apolo, M.B.V. Rechazo y discurso de odio en Twitter: Análisis de contenido de los tuits sobre migrantes y refugiados en español/Rejection and Hate Speech in Twitter: Content Analysis of Tweets about Migrants and Refugees in Spanish. Rev. Española Investig. Sociol. 2020, 172, 21-40. [CrossRef]
- Badjatiya, P.; Gupta, S.; Gupta, M.; Varma, V. Deep Learning for Hate Speech Detection in Tweets. In Proceedings of the 26th International Conference on Compiler Construction, Austin, TX, USA, 5-6 February 2017; pp. 759-760.
- Pitsilis, G.K.; Ramampiaro, H.; Langseth, H. Effective hate-speech detection in Twitter data using recurrent neural networks. Appl. Intell. 2018, 48, 4730-4742. [CrossRef]
- Ghani, N.A.; Hamid, S.; Hashem, I.A.T.; Ahmed, E. Social media big data analytics: A survey. Comput. Hum. Behav. 2019, 101, 417-428. [CrossRef]
- Sánchez-Holgado, P.; Arcila-Calderón, C. Supervised Sentiment Analysis of Science Topics: Developing a Training Set of Tweets in Spanish. J. Infor. Technol. Res. 2020, 13, 80-94. [CrossRef]
- Korkmaz, G.; Cadena, J.; Kuhlman, C.J.; Marathe, A.; Vullikanti, A.; Ramakrishnan, N. Multi-source models for civil unrest forecasting. Soc. Netw. Anal. Min. 2016, 6, 1-25. [CrossRef]
- Capozzi, A.T.; Lai, M.; Basile, V.; Poletto, F.; Sanguinetti, M.; Bosco, C.; Patti, V.; Ruffo, G.; Musto, C.; Polignano, M.; et al. Computational linguistics against hate: Hate speech detection and visualization on social media in the "Contro L'Odio" project. In Proceedings of the 6th Italian Conference on Computational Linguistics, CLiC-it 2019, Bari, Italy, 13-15 November 2019; Volume 2481, pp. 1-6.
- Dimoulas, C.A. Multimedia. In The SAGE International Encyclopedia of Mass Media and Society; Merskin, D.L., Ed.; SAGE Publications, Inc.: Saunders Oaks, CA, USA, 2019.
- Dimoulas, C.A. Multimedia Authoring and Management Technologies: Non-Linear Storytelling in the New Digital Media; Association of Greek Academic Libraries: Athens, Greece, 2015; Available online: http://hdl.handle.net/11419/4343 (accessed on 18 March 2021). (In Greek)
- Chatzara, E.; Kotsakis, R.; Tsipas, N.; Vrysis, L.; Dimoulas, C. Machine-Assisted Learning in Highly-Interdisciplinary Media Fields: A Multimedia Guide on Modern Art. Educ. Sci. 2019, 9, 198. [CrossRef]
- Psomadaki, O.; Dimoulas, C.; Kalliris, G.; Paschalidis, G. Digital storytelling and audience engagement in cultural heritage management: A collaborative model based on the Digital City of Thessaloniki. J. Cult. Herit. 2019, 36, 12-22. [CrossRef]
- Katsaounidou, A.; Vrysis, L.; Kotsakis, R.; Dimoulas, C.; Veglis, A. MAthE the Game: A Serious Game for Education and Training in News Verification. Educ. Sci. 2019, 9, 155. [CrossRef]
- Graham, M.; Hale, S.A.; Gaffney, D. Where in the World Are You? Geolocation and Language Identification in Twitter. Prof. Geogr. 2014, 66, 568-578. [CrossRef]
- De Vries, E.; Schoonvelde, M.; Schumacher, G. No Longer Lost in Translation: Evidence that Google Translate Works for Comparative Bag-of-Words Text Applications. Politi. Anal. 2018, 26, 417-430. [CrossRef]
- Loria, S. Textblob Documentation. Available online: https://buildmedia.readthedocs.org/media/pdf/textblob/latest/textblob. pdf (accessed on 18 March 2021).
- Clemens, K. Geocoding with openstreetmap data. In Proceedings of the GEOProcessing 2015, Lisbon, Portugal, 22-27 February 2015; p. 10.
- Arcila-Calderón, C.; Amores, J.; Blanco, D.; Sánchez, M.; Frías, M. Detecting hate speech against migrants and refugees in Twitter using supervised text classification. In Proceedings of the International Communication Association's 71th Annual Conference, Denver, CO, USA, 27-31 May 2021.
- Chollet, F. Keras: The Python Deep Learning Library. Available online: http://ascl.net/1806.022 (accessed on 18 March 2021).
- Spiliotopoulou, L.; Damopoulos, D.; Charalabidis, Y.; Maragoudakis, M.; Gritzalis, S. Europe in the shadow of financial crisis: Policy Making via Stance Classification. In Proceedings of the 50th Hawaii International Conference on System Sciences (2017), Hilton Waikoloa Village, HI, USA, 4-7 January 2017.
- Thelwall, M.; Buckley, K.; Paltoglou, G.; Cai, D.; Kappas, A. Sentiment strength detection in short informal text. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 2544-2558. [CrossRef]
- Nakayama, H.; Kubo, T.; Kamura, J.; Taniguchi, Y.; Liang, X. Doccano: Text Annotation tool for Human. 2018. Available online: https://github.com/doccano/doccano (accessed on 18 March 2021).