Second-Order Information in Data Assimilation
2002, Monthly Weather Review
https://doi.org/10.1175/1520-0493(2002)130<0629:SOIIDA>2.0.CO;2Abstract
In variational data assimilation (VDA) for meteorological and/or oceanic models, the assimilated fields are deduced by combining the model and the gradient of a cost functional measuring discrepancy between model solution and observation, via a first order optimality system. However existence and uniqueness of the VDA problem along with convergence of the algorithms for its implementation depend on the convexity of the cost function. Properties of local convexity can be deduced by studying the Hessian of the cost function in the vicinity of the optimum. This shows the necessity of second order information to ensure a unique solution to the VDA problem.
References (110)
- Abate,J., C. Bischof, A. Carle, and L. Roh,1997:Algorithms and Design for a Second-Order Automatic Differentiation Module.in Proc. Int. Symposium on Sym- bolic and Algebraic Computing (ISSAC) '97,Association of Computing Machinery, New York,149-155.
- Alekseev, K. A. and Navon I. M., 2001a: The Analysis of an Ill-Posed Problem Using Multiscale Resolution and Second Order Adjoint Techniques. Computer Methods in Applied Mechanics and Engineering, 190, 15-17 ,1937-1953 .
- Alekseev, K.A. and Navon I.M., 2001b:On Estimation of Temperature Un- certainty Using the Order Adjoint Problem. Accepted for publication in International Journal of Computational Fluid Dynamics, Available from http://www.csit.fsu.edu/ navon/pubs/.
- Arian,E. and S. Ta'asan,1999:Analysis of the Hessian for aerodynamic optimization: inviscid flow.Computers & Fluids,28: (7), 853-877.
- Averbukh V.Z., Figueroa S. and Schlick T.,1994: Remark on Algorithm-566. ACM Trans. Math Software 20: (3) 282-285 .
- Barkmeijer, J., Buizza R. and Palmer T.N.,1999: 3D-Var Hessian singular vectors and their potential use in the ECMWF Ensemble Prediction System. Quart. J. Roy. Meteor. Soc.125, Part B 2333-2351. .
- Barkmeijer, J., Van Gijzen, M. and F. Bouttier ,1998: Singular vectors and estimates of the analysis-error covariance metric. Quart. J. Roy. Meteor. Soc. 124, Part A, 1695-1713 .
- Bischof, C. H.,1995: Automatic Differentiation, Tangent Linear Models, and (Pseudo)Adjoints.in Proceedings of the Workshop on High-Performance Computing in the Geosciences, Francois-Xavier Le Dimet, ed.,NATO Advanced Science Insti- tutes Series : C, Mathematical and Physical Sciences , 462, Kluwer Academic Pub- lishers B.V.
- Burger,J., J. L. Brizaut and M. Pogu, 1992: Comparison of two methods for the calculation of the gradient and of the Hessian of the cost functions associated with differential systems. Mathematics and Computers in Simulation, 34, 551-562.
- Bus, J. C. P., 1977: Convergence of Newton-like methods for solving systems of nonlinear equations. Numerische Mathematik, 27, 271-281.
- Coleman, T. F. and Cai J. Y.,1986: The Cyclic Coloring Problem and Estimation of Sparse Hessian Matrices .SIAM J. Algebra Discr. 7 (2), 221-235 .
- Coleman, T.F., B.S. Garbow and J.J. More ,1985: Software for estimating Sparse Hessian Matrices. ACM Trans Math Software 11: (4), 363-377 .
- Coleman, T.F., B.S. Garbow and J.J. More ,1985a: Fortran Subroutines for estimat- ing Sparse Hessian Matrices. ACM Trans Math Software 11: (4), 378-378.
- Coleman TF, More J.J.,1984: Estimation of sparse Hessian Matrices and Graph- coloring Problems. Math Program,28: (3), 243-270 .
- Courtier, P. and O. Talagrand, 1987: Variational assimilation of meteorological obser- vations with the adjoint equations Part 2. Numerical results. Quart. J. Roy. Meteor. Soc., 113, 1329-1347.
- Courtier, P., J.-N. Thepaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var, using an incremental approach. Quart J. Roy. Meteor. Soc., 120, 1367-1388.
- Courtier, P.,1993: Introduction to Numerical Weather prediction Data Assimilation Methods. Proc. ECMWF Seminar on Developments in the use of Satellite Data In Numerical Weather Prediction. 6-10 September 1993.
- Davidon, W. C., 1959: Variable metric method for minimization. A. E. C. Research and Development Report, ANL-5990 (Rev.).
- Davidon, W. C., 1991: Variable metric method for minimization. SIAM Journal on Optimization,1,1-17.
- Davidson E.R.,1975: The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of a large real symmetric matrices. J. Comput. Phys., 17, 87-94.
- Dembo, R. S., S. C. Eisenstat and T. Steihaug, 1982: Inexact Newton methods. SIAM Journal of Numerical analysis, 19, 400-408.
- Dembo, R. S. and T. Steihaug, 1983: Truncated-Newton algorithms for large-scale unconstrained optimization. Math. Prog., 26, 190-212.
- Dennis, J. and R. Schnabel, 1983: Numerical methods for unconstrained Optimization and nonlinear equations. EngleWood Cliffs, NJ: Prentice-Hall, 378pp.
- Dennis, J., 1994: Personal communication. Dept. of Math., Rice University, Houston, TX.
- Dixon, L. C. W., 1991: Use of automatic differentiation for calculating Hessians and Newton steps, in Automatic differentiation of algorithms: theory, implementation, and application, Andreas Griewank and George F. Corliss (ed.), SIAM, Philadelphia, 115-125.
- Ehrendorfer, M. and F. Bouttier,1998: An explicit low-resolution extended Kalman filter: Implementation and preliminary experimentation. Sept 1998. ECMWF Tech- nical Memorandum No 259.
- Errico, Ronald M., Tomislava Vukićević, and Kevin Raeder, 1993: Examination of the accuracy of a tangent linear model. Tellus, 45A, 462-477.
- Fisher, M. and Courtier, P., 1995:Estimating the covariance matrices of analysis and forecast errors in variational data assimilation.ECMWF Tech Memorandum, No. 220, 28pp.
- Fisher, M.,1998: Development of a simplified Kalman filter.ECMWF Tech Memo- randum, No. 260,16pp.
- Forsythe ,G. E. and E. G. Strauss,1955: On best conditioned matrices.Proc. Amer. Math. Soc., 6, 340-345.
- Gay , D.M.,1996: More AD of Nonlinear AMPL Models: Computing Hessian Infor- mation and Exploiting Partial Separability in Computational Differentiation: Tech- niques, Applications, and Tools Martin Berz, Christian Bischof, George Corliss, and Andreas Griewank, Editors, Proceedings in Applied Mathematics 89 .SIAM 1996 / xvi + 421 pages.
- Giering, R. and T. Kaminski ,1998a: Recipes for adjoint code construction ACM Trans Math Software,24: (4) ,437-474.
- Giering, R. and T. Kaminski ,1998b:Using TAMC to generate efficient adjoint code: Comparison of automatically generated code for evaluation of first and second or- der derivatives to hand written code from the Minpack-2 collection.Extended ab- stracts of the Session Automatic Differentiation for adjoint code generation at the IMAC Conference on Applications of Computer Algebra, Prag, 1998. Available at:http://puddle.mit.edu/ ralf/tamc/minpack/gierkam/node1.html.
- Gilbert, J. C., 1992: Automatic differentiation and iterative processes. Optimization Methods and Software, 1, 13-21.
- Gill, P. E. and W. Murray, 1972: Quasi-Newton methods for unconstrained opti- mization. J. Inst. Maths Applics, 9, 91-108.
- Gill, P. E. and W. Murray, 1974: Numerical methods for unconstrained optimization. Academic Press, London and New-York, 283pp.
- Gill, P. E. and W. Murray, 1979: Newton-type methods for unconstrained and lin- early constrained optimization. Math. Prog., 28, 311-350.
- Gill P. E., Walter Murray and Margaret H. Wright, 1981 : Practical Optimization. Academic Press, London, 401pp.
- Gill, P. E., W. Murray, M. C. Saunders and M. H. Wright, 1983: Computing forward- difference intervals for numerical optimization. SIAM J. Sci. Stat. Comput., 4, 310- 321.
- Grammeltvedt, A., 1969: A survey of finite-difference schemes for the primitive equa- tions for a barotropic fluid. Mon. Wea. Rev., 97, 387-404.
- Griewank, A. and George F. Corliss., 1991: Automatic differentiation of algorithms: theory, implementation, and application, SIAM, Philadelphia, 353pp.
- Griewank, A.,1993: Some bounds on the complexity of gradients, Jacobians, and Hes- sians,Complexity in Nonlinear Optimization (P.M. Pardalos, ed.), World Scientific Publishers, , pp. 128-161.
- Griewank, A.,2000: Evaluating Derivatives: Principles and Techniques of Algo- rithmic Differentiation. Frontiers in Applied Mathematics 19, SIAM , Philadelphia, 369pp.
- Griewank, A.,2001: Complexity of gradients, Jacobians and Hessians,SA. In Encyclopaedia of Optimization, edited by Floudas and Pardalos. Published by Kluwer Academic Publishers. Kluwer Academic Publishers. Dorderecht, The Nether- lands,3200pp.
- Hamming, R. W., 1973: Numerical methods for scientists and engineers, 2nd edition, McGraw-Hill and New York.
- Hovland ,P.,1995: Using ADIFOR 1.0 to Compute Hessians, CRPC-TR95540- S,Center for Research on Parallel Computation, Rice University, Houston, TX, 12 pp.
- Ide, K., P. Courtier, M. Ghil, and A. Lorenc, 1997: Unified notation for data assim- ilation: Operational sequential and variational. In Data Assimilation, Meteorology and Oceanography: Theory and Practice, J. Meteorol. Soc Japan, 75, 1B, 71-79.
- Hou, G J.-W. and J. Sheen, 1993: Numerical methods for second order shape sensi- tivity analysis with application to heat conduction problems. Int. J. Num. Meth. in Engr., 36, 417-435.
- Jackson R.H.F. and G.P. McCormic: Second order sensitivity analysis in factorable programming: Theory and Applications.Mathematical Programming, 41, No. 1, 1-28.
- Kalnay E.,S. K. Park, Z-X. Pu and J Gao, 2000:Application of the quasi-inverse method to data assimilation. Mon. Wea. Rev., 128, 864-875.
- Lacarra, J. F. and O. Talagrand, 1988: Short-range evolution of small perturbations in a barotropic model. Tellus, 40A, 81-95.
- Le Dimet, F. X. and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus, 38A,97-110.
- Le Dimet F. X., H. E. Ngodock , B. Luong and J. Verron, 1997: Sensitivity analysis in variational data assimilation. J Meteorol Soc Japan, 75: (1B), 245-255.
- Le Dimet , F. X.and I Charpentier,1998: Methodes de second order en assimilation de donnees.In Equations aux dérivées partielles et applications (articles dédiées à Jacques-Louis Lions) , Gauthier-Villars, Paris 623-640.808pp.
- Lehoucq R.B., D.C. Sorensen and C. Yang, 1998: Arpack Users' Guide: Solution of Large-scale eigenvalue Problems with Implicitly Restarted Arnoldi Methods. Soft- ware, Environments, and Tools 6 ,SIAM, Philadelphia, 160pp.
- Lewis, R.M.,1997:A Nonlinear Programming perspective on sensitivity calculations for systems governed by state equations.ICASE Report,No. 97-12,35pp.
- Liu, D. C and Jorge Nocedal, 1989: On the limited memory BFGS method for large scale minimization. Math. Prog., 45, 503-528.
- Moré, J.J., B. S. Garbow and K.E. Hillstrom, 1981:Testing Unconstrained Optimiza- tion Software. ACM Transactions on Mathematical Software, 7, 17-41.
- Nash, S. G., 1982: Truncated-Newton methods. Ph.D. Thesis, Computer Science Department, Stanford University, CA.
- Nash, S. G., 1984: Newton-type minimization via the Lanczos method. SIAM J. Numer. Anal., 21 (4), 770-788.
- Nash, S. G., 1984: Truncated-Newton methods for large-scale function minimization. Applications of Nonlinear Programming to Optimization and Control, H.E. Rauch (ed.), Pergamon Press, Oxford, 91-100.
- Nash, S. G., 1984: User's guide for TN/TNBC: Fortran routines for nonlinear opti- mization. Tech. Rep. No., 397, 17pp.
- Nash, S. G., 1984: Solving nonlinear programming problems using truncated-Newton techniques. Numerical optimization, P. T. Boggs, R. H. Byrd and R. B. Schnabel (ed.), SIAM, Philadelphia, 119-136.
- Nash, S. G., 1985: Preconditioning of truncated-Newton methods. SIAM J. Sci. Stat. Comput., 6 (3), 599-616.
- Nash, S. G. and A. Sofer, 1989: Block truncated-Newton methods for parallel opti- mization. Math. Prog., 45, 529-546.
- Nash, S. G. and A. Sofer, 1989: A parallel line search for Newton type methods in computer science and statistics. Proceeding 21-st Symposium on the Interface, K. Berk and L. Malone (ed.), ASA, 134-137.
- Nash, S.G. and J. Nocedal,1991: A Numerical Study of the Limited Memory BFGS Method and the Truncated-Newton Method for Large Scale Optimization,SIAM J. Optimization,1, pp. 358-372.
- Nash, S. G. and A. Sofer, 1990: Assessing a search direction within a truncated- Newton method. Operations Research Letters, 9 (4), 219-221.
- Nash S.G.,2000: A Survey of Truncated-Newton Methods,Journal of Computational and Applied Mathematics, 124, 45-59.
- Nash, S. G. and A. Sofer, 1996: Linear and Nonlinear Programming, McGraw-Hill (New York),ISBN 0-07-046065-5.
- Navon, I. M. and D. M. Legler, 1987: Conjugate gradient methods for large scale minimization in meteorology. Mon. Wea. Rev., 115, 1479-1502. conjugate gradient method
- Navon, I. M. , X. L. Zou, J. Derber and J. Sela, 1992: Variational data assimilation with an adiabatic version of the NMC Spectral Model. Mon. Wea. Rev.,122, 1433- 1446.
- Ngodock, H. E.,1996:Data Assimilation and sensitivity Analysis.Ph. D. Thesis, LMC- IMAG Laboratory, University Joseph Fourier, Grenoble, France, 213pp.
- Nocedal, J., 1980: Updating quasi-Newton matrices with limited storage. Mathemat- ics of Computation, 35, 773-782.
- Nocedal,J. and S.J. Wright,1999: Numerical Optimization.(Springer Series in Oper- ations Research. Ed.: P. Glynn) Springer Verlag Series in Operations Research,656 pp., 85 illus.
- O'Leary, D. P., 1983: A discrete Newton algorithm for minimizing a function of many variables. Math. Prog., 23, 20-23.
- Park, S.K., and E. Kalnay, 1999: Application of the quasi-inverse method to storm- scale data assimilation. Abstracts, 5th SIAM Conference on Mathematical and Com- putational Issues in the Geosciences, March 24-27, 1999, San Antonio, Texas, SIAM, 104.
- Powell M.J.D., Toint P.L.,1979: Estimation of sparse Hessian matrices. SIAM J. Numer. Anal.,16: (6), 1060-1074.
- Pu,Z.X. and E. Kalnay,1999: Targeting observations with the quasi-inverse linear and adjoint NCEP global models: Performance during FASTEX.Quart. J. Roy. Meteor. Soc., 125 No. 561,pp 3329-3337
- Pu Z.X., E. Kalnay , J. Sela , et al.,1997: Sensitivity of forecast errors to initial conditions with a quasi-inverse linear method Mon. Wea. Rev ,125: (10), 2479- 2503.
- Rabier, F. and P. Courtier , 1992:Four dimensional assimilation in the presence of baroclinic instability.Quart. J. Roy. Meterol. Soc., 118, 649-672.
- Rabier, F., J-F. Mahfouf, M. Fisher, H. Jarvinen, A. Simmons, E. Andersson, F. Bouttier, P. Courtier, M. Hamrud, J. Haseler, A. Hollingsworth, L. Isaksen, E. Klinker, S. Saarinen, C.Temperton, J-N. Thepaut, P. Unden, and D. Vasiljevic,1997: Recent experimentation on 4D-Var and first results from a Simplified Kalman Filter. October 1997.ECMWF Technical Memorandum, No. 240.
- Reuther, J. J.,1996: Aerodynamic Shape Optimization Using Control Theory.Ph.D. Dissertation, University of California, Davis, 1996.Available from University of Cal- ifornia, Davis.
- Santosa, Fadil and William W. Symes, 1988: Computation of the Hessian for least- squares solutions of inverse problems of reflection seismology. Inverse Problems, 4, 211-233.
- Santosa, Fadil and William W. Symes, 1989: An analysis of least squares velocity inversion. Society of Exploration Geophysicists, Geophysical monograph 4, Tulsa.
- Schlick, T. and A. Fogelson, 1992: TNPACK-A truncated Newton minimization Package for large-scale problems: I. Algorithm and usage. ACM Trans on Math. Soft., 18 (1), 46-70.
- Schlick, T. and A. Fogelson, 1992: TNPACK-A Truncated Newton minimization package for large-scale problems: II. Implementation examples. ACM Trans Math. Soft., 18 (1), 71-111.
- Shanno, D. F. and K. H. Phua, 1980: Remark on algorithm 500 -a variable method subroutine for unconstrained nonlinear minimization. ACM Trans. on Math. Soft., 6, 618-622.
- Sleijpen G.L.G., H.A. Van der Vorst ,1996: A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM J Matrix Anal A 17: (2), 401-425 .
- Stewart III, G. W., 1967: A modification of Davidon's minimization method to accept difference approximations of derivatives. Journal of the Association for Computing Machinery, 14 (1), 72-83.
- Symes, William W., 1990:Velocity inversion: A case study in infinite-dimensional optimization. Math. Programming, 48, 71-102.
- Symes, William W., 1991: A differential semblance algorithm for the inverse problem of reflection seismology. Computers Math. Applic., 22(4/5), 147-178. Math.,
- Symes, William W., 1993:A differential semblance algorithm for the inversion of Multioffset Seismic Reflection Data. Jour. Geophys. Res., 98 B2, 2061-2073.
- Talagrand, O. and P. Courtier, 1987: Variational assimilation of meteorological obser- vations with the adjoint vorticity equation-Part 1. Theory. Quart. J. Roy. Meteorol. Soc., 113, 1311-1328.
- Thacker, W. C.,1989: The Role of Hessian Matrix in Fitting models to Measurements. J. Geophys. Res., 94, 6177-6196.
- Thepaut , J. N. and Courtier., Philip,1991: Four-dimensional variational assimilation using the adjoint of a multilevel primitive equation model. Quart. J. Roy. Meteorol. Soc., 117, 1225-1254. assimilation
- Thepaut, J.-N. and Moll, P.,1990: Variational inversion of simulated TOVS radiances using the adjoint technique.Quart. J. Roy. Meteorol. Soc., 116, 1425-1448.
- Thomas, R. Cuthbert, Jr., 1987: Optimization using personal computers. John Wiley & Sons, New York, pp. 474.
- Veerse F.,1999: Variable-storage quasi-Newton operators as inverse forecast/analysis error covariance matrices in data assimilation. INRIA Technical Report,No. 3685 , Theme 4,28pp.
- Wang, Z., I. M. Navon, F. X. Le Dimet and X. Zou, 1992: The Second Order Adjoint Analysis: Theory and Application. Meteorology and Atmospheric Physics, 50, 3-20.
- Wang, Z., I. M. Navon and X. Zou, 1993: The adjoint truncated Newton algorithm for large-scale unconstrained optimization. Tech. Rep. FSU-SCRI-92-170, Florida State University, Tallahassee, Florida, 44 pp.
- Wang, Z., 1993: Variational data assimilation with 2-D shallow water equations and 3-D FSU global spectral models. Tech. Rep. FSU-SCRI-93T-149, Florida State University, Tallahassee, Florida, 235 pp.
- Wang, Z., I. M. Navon, X. Zou and F.X. Le Dimet,1995: A Truncated -Newton Optimization Algorithm in Meteorology Applications with Analytic Hessian/vector Products, Computational Optimization and Applications,4 , 241-262.
- Wang, Z., Kelvin K. Droegemeier, L. White and I. M. Navon ,1997: Application of a New Adjoint Newton Algorithm to the 3-D ARPS Storm Scale Model Using Simulated Data, Monthly Weather Review,125, No 10, 2460-2478.
- Wang, Z. , Kelvin K. Droegemeier and L. White, 1998 :The Adjoint New- ton algorithm for large-scale unconstrained optimization in meteorology applica- tions.Computational Optimization and Applications,10 , 283-320.
- Zou, X., I. M. Navon, F. X. Le Dimet, A. Nouailler and T. Schlick, 1990: A comparison of efficient large-scale minimization algorithms for optimal control ap- plications in meteorology. Tech. Rep. FSU-SCRI-90-167, Florida State University, Tallahassee, Florida, 44pp.
- Zou, X., I. M. Navon, M. Berger, Paul K. H. Phua, T. Schlick and F. X. Le Dimet, 1993: Numerical experience with limited-Memory Quasi-Newton methods and Trun- cated Newton methods. SIAM Jour. on Numerical Optimization, 3, 582-608.
- Zou, X., I. M. Navon and F. X. Le Dimet, 1992: Incomplete observations and control of gravity waves in variational data assimilation. Tellus, 44A, 273-296.
- Zupanski, M. 1996 : A preconditioning algorithm for four-dimensional variational data assimilation. Mon. Wea Rev., 124: (11) ,2562-2573.
- Yang, W., I. M. Navon and P. Courtier,1996: A New Hessian Preconditioning Method Applied to Variational Data Assimilation Experiments using Adiabatic Ver- sion of NASA/GEOS-1 GCM . Monthly Weather Review, 124, No 5 1000-1017.